Marine Biology

, Volume 146, Issue 3, pp 607–617 | Cite as

Actions of 17β-estradiol on carbohydrate metabolism in liver, gills, and brain of gilthead sea bream Sparus auratus during acclimation to different salinities

  • S. Sangiao-Alvarellos
  • J. M. Guzmán
  • R. Láiz-Carrión
  • J. M. Míguez
  • M. P. Martín del Río
  • J. M. Mancera
  • J. L. Soengas
Research Article


The influence of gonadal maturation on seawater adaptability at the metabolic level was assessed in the euryhaline teleost Sparus auratus by treatment of immature fish with 17ß-estradiol (E2) followed by acclimation to different environmental salinities. Fish were injected with coconut oil alone (sham) or containing E2 (10 µg g−1 body weight) and maintained in seawater (40‰). After 5 days, fish from oil- and E2-implanted groups were sampled. At the same time, fish of both groups were transferred to brackish water (5‰, hypoosmotic test), seawater (40‰, transfer test), and hypersaline water (55‰, hyperosmotic test); 4 days after transfer (9 days post-implant) all groups were sampled. Data obtained from liver suggest that E2 treatment produced effects comparable to those already reported in literature, including decreased glycogen levels, increased glycolytic potential, and decreased gluconeogenic potential. This, together with the fact that many changes displayed in shams among salinities disappeared in E2-treated fish allow us to suggest that the response of liver carbohydrate metabolism to osmotic acclimation is exceeded by the response elicited by E2 treatment. In gills, E2 treatment produced increased lactate levels, decreased capacity for use of exogenous glucose, and decreased the potential of the pentose phosphate pathway. These findings suggest that the energy demand occurring in gills during osmotic acclimation should be increasingly fuelled by substrates other than exogenous glucose. Finally, data obtained in brain of E2-treated fish suggest a lower necessity of exogenous glucose, increased lactate levels, and decreased glycolytic potential.



This work was supported by grants BOS2001-4031-C02-01 (Ministerio de Ciencia y Tecnología-FEDER, Spain) and PETRI PTR1995-0431-OP (Ministerio de Educación y Cultura, Spain) to J.M.M., and grants BOS2001-4031-C02-02 and VEM2003-20062 (Ministerio de Ciencia y Tecnología-FEDER, Spain) and PGIDT01PXI30113PR and PGIDT04PXIC31208PN (Xunta de Galicia, Spain) to J.L.S. S.S-A. was the recipient of a predoctoral fellowship from the Xunta de Galicia. R.L-C. was the recipient of an MIT-2 predoctoral fellowship from the Ministerio de Ciencia y Tecnología. The authors wish to thank Planta de Cultivos Marinos (CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain) for providing experimental fish.


  1. Barry TP, Grau G (1986) Estradiol-17β and thyrotropin-releasing hormone stimulate prolactin release from the pituitary gland of a teleost fish in vitro. Gen Comp Endocrinol 62:306–314PubMedGoogle Scholar
  2. Bjerkeng B, Johnsen K, Mayer I, Storebakken T, Nilssen KJ (1999) Influence of 11-ketotestosterone, 17ß-estradiol, and 3,5,3′-triiodo-L-thyronine on distribution and metabolism of carotenoids in Arctic charr, Salvelinus alpinus L. Fish Physiol Biochem 21:353–364CrossRefGoogle Scholar
  3. Borsky RJ (2000) Nongenomic membrane actions of glucocorticoids in vertebrates. Trends Endocrinol Metab 11:427–436CrossRefPubMedGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Brinca L, Fuentes J, Power DM (2003) The regulatory action of estrogen and vasoactive intestinal peptide on prolactin secretion in sea bream (Sparus aurata, L.). Gen Comp Endocrinol 131:117–125CrossRefPubMedGoogle Scholar
  6. Cavaco JEB, Santos CRA, Ingleton PM, Canario AVM, Power DM (2003) Quantification of prolactin (PRL) and PRL receptor messenger RNA in gilthead seabream (Sparus aurata) after treatment with estradiol-17ß. Biol Reprod 68:588–594PubMedGoogle Scholar
  7. Chervinski J (1984) Salinity tolerance of young gilthead sea bream Sparus aurata. Bamidgeh 36:121–124Google Scholar
  8. Flett PA, Leatherland JF (1989) Dose-related effects of 17ß-estradiol (E2) on liver weight, plasma E2, protein, calcium, and thyroid hormone levels, and measurements of the binding of thyroid hormones to vitellogenin in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 34:515–527Google Scholar
  9. Guerreiro PM, Fuentes J, Canario AVM, Power DM (2002) Calcium balance in sea bream (Sparus aurata). The effect of oestradiol-17ß. J Endocrinol 173:377–385PubMedGoogle Scholar
  10. Guzmán JM, Sangiao-Alvarellos S, Laiz-Carrión R, Miguez JM, Martín del Rio MP, Soengas JL, Mancera JM (2004) Osmoregulatory action of 17ß-estradiol in the gilthead sea bream Sparus aurata. J Exp Zool 301A:828–836CrossRefGoogle Scholar
  11. Haux C, Norberg B (1985) The influence of estradiol-17ß on the liver content of protein, lipids, glycogen, and nucleic acids in juvenile rainbow trout, Salmo gairdneri. Comp Biochem Physiol B 81:275–279CrossRefGoogle Scholar
  12. Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anesthetics on acid–base balance, hematocrit, blood gases, cortisol and adrenaline in rainbow trout. Can J Fish Aquat Sci 67:2065–2073Google Scholar
  13. Keppler D, Decker K (1974) Glycogen. Determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 1127–1131Google Scholar
  14. Korsgaard B, Mommsen TP (1993) Gluconeogenesis in hepatocytes of immature rainbow trout (Oncorhynchus mykiss): control by estradiol. Gen Comp Endocrinol 89:17–27CrossRefPubMedGoogle Scholar
  15. Láiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Rio MP, Míguez JM, Soengas JL, Mancera JM (2002) Energy metabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 2227:179–188Google Scholar
  16. Láiz-Carrión R, Martín del Río MP, Miguez JM, Mancera JM, Soengas JL (2003) Influence of cortisol on osmoregulation and energy metabolism in gilthead sea bream Sparus aurata. J Exp Zool 298A:105–118CrossRefGoogle Scholar
  17. Le François NR, Blier PU, Adambounou LT, Lacroix M (1997) Alteration of gonadal development of brook charr (Salvelinus fontinalis): impact on salinity tolerance following transfer in estuarine conditions. J Exp Zool 279:273–283CrossRefGoogle Scholar
  18. Leung TC, Ng TB, Woo NYS (1991) Metabolic effect of bovine growth hormone in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A 99:633–636CrossRefPubMedGoogle Scholar
  19. Madsen SS, Korsgaard B (1991) Opposite effects of 17β-estradiol and combined growth hormone–cortisol treatment on hypo-osmoregulatory performance in sea trout presmolts, Salmo trutta. Gen Comp Endocrinol 83:276–282PubMedGoogle Scholar
  20. Madsen SS, Mathiesen AB, Korsgaard B (1997) Effects of 17β-estradiol and 4-nonylphenol on smoltification and vitellogenesis in Atlantic salmon (Salmo salar). Fish Physiol Biochem 17:303–312CrossRefGoogle Scholar
  21. Mancera JM, Pérez-Fígares JM, Fernández-Llebrez P (1993a) Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata). Comp Biochem Physiol A 106:245–250CrossRefGoogle Scholar
  22. Mancera JM, Fernández-Llebrez P, Grondona JM, Pérez-Fígares JM (1993b) Influence of environmental salinity on prolactin and corticotropic cells in the euryhaline gilthead sea bream (Sparus aurata L.). Gen Comp Endocrinol 90:220–231CrossRefPubMedGoogle Scholar
  23. Mancera JM, Pérez-Fígares JM, Fernández-Llebrez P (1994) Effect of cortisol on brackish water adaptation in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol A 107:397–402CrossRefGoogle Scholar
  24. Mancera JM, Pérez-Fígares JM, Fernández-Llebrez P (1995) Effect of decreased environmental salinity on growth hormone cells in the euryhaline gilthead sea bream (Sparus aurata L.). J Fish Biol 46:494–500Google Scholar
  25. Mancera JM, Laiz-Carrión R, Martín del Río MP (2002) Osmoregulatory action of PRL, GH and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95–103CrossRefPubMedGoogle Scholar
  26. McCormick SD, Naiman RJ (1985) Hypoosmoregulation in an anadromous teleost: influence of sex and maturation. J Exp Zool 234:193–198PubMedGoogle Scholar
  27. Mommsen TP (1984) Metabolism of the fish gill. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic, New York, pp 203–238Google Scholar
  28. Mommsen TP, Walsh PJ (1988) Vitellogenesis and oocyte assembly. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 11A. Academic, New York, pp 347–406Google Scholar
  29. Mommsen TP, Walsh PJ, Moon TW (1985) Gluconeogenesis in hepatocytes and kidney of Atlantic salmon. Mol Physiol 8:89–100Google Scholar
  30. Mosconi G, Carnevali O, Carletta R, Nabissi M, Polzonetti-Magni AM (1998) Gilthead seabream (Sparus aurata) vitellogenin: purification, partial characterization, and validation of an enzyme-linked immunosorbent assay (ELISA). Gen Comp Endocrinol 110:252–261CrossRefPubMedGoogle Scholar
  31. Olin T, Bergström E, Jungvid H, Von der Decken A (1992) Effect of dietary keto acids on intermediary metabolism of nutrients in Atlantic salmon (Salmo salar) during 17-beta-estradiol-induced vitellogenin synthesis. Acta Agric Scand 42:246–253Google Scholar
  32. Perry SF, Walsh PJ (1989) Metabolism of isolated fish gill cells: contribution of epithelial chloride cells. J Exp Biol 144:507–520PubMedGoogle Scholar
  33. Peter MCS, Oomen OV (1989) Oxidative metabolism in a teleost, Anabas testudineus Bloch: effect of testosterone and estradiol-17ß on hepatic enzyme activities. Fish Physiol Biochem 6:377–385Google Scholar
  34. Petersen IM, Sand O, Korsgaard B (1983) A time course study of the effect of repetitive doses of estradiol-17beta on serum glucose and lipids, liver glycogen and some carbohydrate metabolising enzymes in liver of male flounder (Platichthys flesus). Comp Biochem Physiol B 74:459–466CrossRefPubMedGoogle Scholar
  35. Peyon P, Calvayrac R, Baloche S, Burzawa-Gérard E (1998) Metabolic studies on eel (Anguilla anguilla L.) hepatocytes in primary culture: effect of 17ß-estradiol and growth hormone. Comp Biochem Physiol A 121:35–44CrossRefGoogle Scholar
  36. Poh LH, Munro AD, Tan CH (1997) The effects of oestradiol on the prolactin and growth hormone content of the pituitary of the tilapia, Oreochromis mossambicus, with observations on the incidence of black males. Zool Sci (Tokyo) 14:979–986Google Scholar
  37. Sand O, Petersen I, Korsgard-Emmersen B (1980) Changes in some carbohydrate metabolising enzymes and glycogen in liver glucose, and lipid in serum during vitellogenesis and after induction by estradiol-17ß in the flounder (Platichthys flesus, L.). Comp Biochem Physiol B 65:327–332CrossRefGoogle Scholar
  38. Sangiao-Alvarellos S, Láiz-Carrión R, Guzmán JM, Martín del Rio MP, Míguez JM, Mancera JM, Soengas JL (2003) Acclimation of S. aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. Am J Physiol 285:897–907Google Scholar
  39. Sehgal N, Goswani SV (2001) Biochemical changes in the liver of the Indian freshwater murrel, Channa punctatus (Bloch) during estradiol-induced vitellogenin synthesis. Fish Physiol Biochem 24:149–155CrossRefGoogle Scholar
  40. Sheridan MA (1986) Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. Gen Comp Endocrinol 64:220–238PubMedGoogle Scholar
  41. Socorro S, Power DM, Olsson PE, Canario AV (2000) Two estrogen receptors expressed in the teleost fish, Sparus aurata: cDNA cloning, characterization and tissue distribution. J Endocrinol 166:293–306PubMedGoogle Scholar
  42. Soengas JL, Barciela P, Aldegunde M (1995) Variations in carbohydrate metabolism during gonadal maturation in female turbot (Scophthalmus maximus). Mar Biol 123:11–18Google Scholar
  43. Soengas JL, Strong EF, Fuentes J, Veira JAR, Andrés MD (1996) Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem 15:491–511Google Scholar
  44. Soengas JL, Strong EF, Andrés MD (1998) Glucose, lactate, and ß-hydroxybutyrate utilization by rainbow trout brain: changes during food deprivation. Physiol Zool 71:285–293PubMedGoogle Scholar
  45. Soengas JL, Aldegunde M (2002) Energy m??? of fish brain. Comp Biochem Physiol 131B:271–296Google Scholar
  46. Stein MW (1963) D-Glucose, determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HUY (ed) Methods of enzymatic analysis. Academic, New York, pp 1–117Google Scholar
  47. Sunny F, Oomen OV (2001) Rapid action of glucocorticoids on branchial ATPase activity in Oreochromis mossambicus: an in vivo and in vitro study. Comp Biochem Physiol B 130:323–330CrossRefPubMedGoogle Scholar
  48. Sunny F, Annamma J, Oomen OV (2002) Sex steroids regulate intermediary metabolism in Oreochromis mossambicus. Endocr Res 28:175–188CrossRefPubMedGoogle Scholar
  49. Vijayan MM, Takemura A, Mommsen TP (2001) Estradiol impairs hyposmoregulatory capacity in the euryhaline tilapia, Oreochromis mossambicus. Am J Physiol 281:1161–1168Google Scholar
  50. Washburn BS, Bruss ML, Avery EH, Freedland RA (1992) Effects of estrogen on whole animal and tissue glucose use in female and male rainbow trout. Am J Physiol 263:1241–1247Google Scholar
  51. Woo NYS, Chung ASB, Ng TB (1993) Influence of oral administration of estradiol-17ß and testosterone on growth, digestion, food conversion and metabolism in the underyearling red sea bream, Chrysophrys major. Fish Physiol Biochem 10:377–387Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. Sangiao-Alvarellos
    • 1
  • J. M. Guzmán
    • 2
  • R. Láiz-Carrión
    • 2
  • J. M. Míguez
    • 1
  • M. P. Martín del Río
    • 2
  • J. M. Mancera
    • 2
  • J. L. Soengas
    • 1
  1. 1.Laboratorio de Fisioloxía Animal, Facultade de Ciencias do MarUniversidade de VigoVigoSpain
  2. 2.Departamento de Biología, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizCádizSpain

Personalised recommendations