Marine Biology

, Volume 145, Issue 6, pp 1257–1264 | Cite as

Phylogeographic differentiation of storm petrels (Hydrobates pelagicus) based on cytochrome b mitochondrial DNA variation

  • C. Cagnon
  • B. Lauga
  • G. Hémery
  • C. Mouchès
Research Article


We evaluated mitochondrial DNA (mtDNA) sequence variation in a 910 bp region of the cytochrome b gene of the storm petrel, Hydrobates pelagicus. Samples from birds collected from five populations in the North Atlantic Ocean and the Mediterranean Sea were investigated. Genetic differentiation within the Mediterranean basin was low but high in the Atlantic. Strong differences were noted between the Atlantic and the Mediterranean populations, confirming the distinction of the subspecies H. p. pelagicus and H. p. melitensis for the Atlantic and Mediterranean seabirds, respectively. Divergence between the two subspecies probably resulted from paleogeographic changes in the Strait of Gibraltar, which was likely the route used by H. pelagicus to invade the Mediterranean Sea. Current and past demography and ecology of the storm petrel is regarded as an explanation for the level of differentiation observed within each oceanic basin. We compare the phylogeographic pattern of the storm petrel to other seabirds that breed in the same regions.


Mitochondrial Cytochrome Phylogeographic Pattern Faeroe Island Marine Bird Atlantic Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are greatly indebted to the persons who participated in sample collection: Jean-Claude Thibault (Corsica), Yann Lalanne (Marseille and Biarritz), Jacques Nisser, Bernard Cadiou and Gilles Bentz (Brittany), Frank d’Amico and Jean d’Elbée (Biarritz). We are grateful to Jon Fjeldså and the Zoological Museum at the University of Copenhagen for providing us samples from Faeroe. We thank Solange Karama for technical support and Barbara Mable, Valérie Laporte, and John O’Halloran for comments on the manuscript. Three anonymous reviewers and Associate Editor S. Poulet greatly helped to improve the quality of the manuscript. B. Lauga was supported by a grant from the ‘Société de Secours des Amis des Sciences’. The capture of French birds was under permit from the Centre de Recherche sur la Biologie des Populations d’Oiseaux (CRBPO), and blood collection was approved by the Ministère de l’Environnement et de l’Aménagement du Territoire.


  1. Arctander P (1988) Comparative studies of avian DNA by restriction fragment length polymorphism analysis: convenient procedures based on blood samples from live birds. J Ornithol 129:205–216Google Scholar
  2. Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208Google Scholar
  3. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  4. Catalisano A, Lo Valvio F, Lo Verde G, Massa B (1988) Dati biometrici dell’uccello delle tempeste (Hydrobates pelagicus). Nat Siciliano 4:261–265Google Scholar
  5. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  6. Collina-Girard J (2001) Atlantis off the Gibraltar Strait? Myth and geology. C R Acad Sci Paris 4:233–240Google Scholar
  7. Evans PGH (1986) Monitoring seabirds in the North Atlantic. In: MEDMARAVIS, Monbailliu X, (eds) Mediterranean marine avifauna. Population studies and conservation. Springer, Berlin Heidelberg New York, pp 179–206Google Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  9. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  10. Garcia-Martinez J, Moya A, Raga JA, Latorre A (1999) Genetic differentiation in the striped dolphin Stenella coeruleoalba from European waters according to mitochondrial DNA (mtDNA) restriction analysis. Mol Ecol 8:1069–1073CrossRefPubMedGoogle Scholar
  11. Heidrich P, Amengual J, Wink M (1998) Phylogenetic relationships in Mediterranean and North Atlantic shearwaters (Aves: Procellariidae) based on nucleotide sequences of mtDNA. Biochem Syst Ecol 26:145–170CrossRefGoogle Scholar
  12. Hémery G (2004) Océanite tempête Hydrobates pelagicus. In: Bamière S, Cadiou B, Pons JM (eds) Oiseaux marins nicheurs de France (1960–1990). GISOM, Paris, pp 44–49Google Scholar
  13. Hémery G, d’Elbée E (1985) Discrimination morphologique des populations atlantique et méditerranéenne de pétrel tempête Hydrobates pelagicus. Oiseaux Mar Nicheurs Midi Corse 2:63–67Google Scholar
  14. Hémery G, d’Elbée E, Terrasse JF (1986) Regulation of a storm-petrel Hydrobates pelagicus population by intermittent breeding. C R Acad Sci Paris 303:353–356Google Scholar
  15. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  16. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  17. Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014PubMedGoogle Scholar
  18. Hudson RR, Boos DD, Kaplan NL (1992a) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151PubMedGoogle Scholar
  19. Hudson RR, Slatkin M, Maddison WP (1992b) Estimation of levels of gene flow from DNA-sequence data. Genetics 132:583–589PubMedGoogle Scholar
  20. Kimura M (1980) A simple method for estimating the rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedGoogle Scholar
  21. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200PubMedGoogle Scholar
  22. Kotoulas G, Magoulas A, Tsimenides N, Zouros E (1995) Marked mitochondrial DNA differences between Mediterranean and Atlantic populations of the swordfish, Xiphias gladius. Mol Ecol 4:473–481Google Scholar
  23. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software. Arizona State University, Tempe, Ariz.Google Scholar
  24. Lalanne Y, Hémery G, Cagnon C, d’Amico F, d’Elbée E, Mouchés C (2001) Discrimination morphologique des sous-espèces d’océanites tempête: nouveaux résultats pour deux populations méditerranéennes. Alauda 69:475–482Google Scholar
  25. Liebers D, Helbig AJ, De Knijff P (2001) Genetic differentiation and phylogeography of gulls in the Larus cachinnans-fuscus group (Aves: Charadriiformes). Mol Ecol 10:2447–2462CrossRefPubMedGoogle Scholar
  26. Lloyd C, Tasker ML, Partridge K (1991) The status of seabirds in Britain and Ireland, Poyser, LondonGoogle Scholar
  27. Lo Valvo F, Massa B (2000) Some aspects of the population structure of storm petrels Hydrobates pelagicus breeding on a Mediterranean island. Ring Migr 20:125–128Google Scholar
  28. Mathews GM (1934) A check-list of the order Procellariiformes. Novit Zool 34:187Google Scholar
  29. Mayaud N (1941) Etudes sur les plumages et les mues. Ois Rev Franc Orn XI:44–46Google Scholar
  30. Mayaud N (1949) Nouvelles précisions sur la mue des Procellariens. Alauda 17:144–155, 222–223Google Scholar
  31. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  32. Nunn GB, Stanley SE (1998) Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Mol Biol Evol 15:1360–1371PubMedGoogle Scholar
  33. Nunn GB, Cooper J, Jouventin P, Robertson CJR, Robertson GG (1996) Evolutionary relationships among extant albatrosses (Procellariiformes: Diomedeidae) established from complete cytochrome b gene sequences. Auk 113:784–801Google Scholar
  34. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  35. Perez-Losada M, Guerra A, Sanjuan A (1999) Allozyme differentiation in the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) from the NE Atlantic and Mediterranean. Heredity 83:280–289CrossRefPubMedGoogle Scholar
  36. Roldan MI, Garcia-Marin JL, Utter FM, Pla C (1998) Population genetic structure of European hake, Merluccius merluccius. Heredity 81:327–334CrossRefGoogle Scholar
  37. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  38. Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  39. Schembri M (1843) Catalogo ornitologico del gruppo di Malta. Anglo-Maltese, MaltaGoogle Scholar
  40. Shields GF, Wilson AC (1987) Subspecies of the Canada goose (Branta canadensis) have distinct mitochondrial DNAs. Evolution 41:662–666Google Scholar
  41. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data 3. Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  43. Wilson AC, Cann RL, Carr SM, Georgiady MS, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar
  44. Zotier R, Bretagnolle V, Thibault JC (1999) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313CrossRefGoogle Scholar
  45. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratoire d’Ecologie Moléculaire, EA3525Université de Pau et des Pays de l’Adour, UFR Sciences et TechniquesPau CEDEXFrance
  2. 2.Centre de Recherches sur la Biologie des Populations d’Oiseaux, Station Maritime de RechercheMuséum National d’Histoire NaturelleBiarritzFrance
  3. 3.Laboratoire d’Ecologie Moléculaire, EA3525UFR Sciences et Techniques Côte BasqueAngletFrance

Personalised recommendations