Marine Biology

, Volume 145, Issue 6, pp 1191–1200 | Cite as

Zooplankton biomass and indices of grazing and metabolism during a late winter bloom in subtropical waters

  • S. Hernández-León
  • C. Almeida
  • P. Bécognée
  • L. Yebra
  • J. Arístegui
Research Article


The development of the so-called late winter bloom in subtropical water was studied in an oceanic area north of the Canary Islands from January to May 2000. Zooplankton was sampled at short-term intervals (1–4 days) during the bloom (January–March), and biomass, indices of grazing (gut fluorescence) and metabolism (electron transfer system activity, ETS) were measured in four different size fractions (100–200, 200–500, 500–1000 and >1000 µm). During the bloom, ETS activity and gut fluorescence increased before the development of zooplankton biomass. At the end of February, the presence of an impressive cloud of dust formed in the Sahara desert was related to an increase in chlorophyll and small zooplankton a week later. The increments in biomass were the consequence of consumption by zooplankton as inferred from the indices of grazing and metabolism. Estimated grazing from gut fluorescence and gut evacuation rates during the period of study accounted for 55% of the assessed total ingestion from respiration and normal values of assimilation, showing the importance of the non-pigmented food in the diet of zooplankton in these waters. In contrast, the sharp decreases in zooplankton biomass observed during the bloom appeared during the dark period of the moon, the days in which the diel vertical migrants reach the shallower layers, in agreement with previous works in the area. Thus, the development of the late winter bloom in this region is suggested to be driven by the interplay between resource and consumer controls.


Dust Storm Zooplankton Biomass Full Moon Diel Vertical Migrant Lunar Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded, in part, by the projects Mesopelagic (CICYT MAR97–1036) and Pelagic (EU-CICYT 1FD97–1084), from the Spanish Ministry of Education and the European Union. We wish to thank two reviewers for a number of useful comments and suggestions that helped to greatly improve the manuscript.


  1. Arimoto R, Nottingham AS, Webb J, Schloesslin CA (2001) Non-sea salt sulfate and other aerosol constituents at the south pole during ISCAT. Geophys Res Lett 28:3645–3648CrossRefGoogle Scholar
  2. Arístegui J, Hernández-León S, Montero MF, Gómez M (2001) The seasonal planktonic cycle in coastal waters of the Canary Islands. Sci Mar 65:51–58Google Scholar
  3. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad TF (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  4. Båmstedt U, Solberg PT, Nejstgaard JC (1999) Utilization of small-sized food algae by Calanus finmarchicus (Copepoda: Calanoida) and the significance of feeding history. Sarsia 84:19–38Google Scholar
  5. Barton ED, Arístegui J, Tett P, Cantón M, García-Braun J, Hernández-León S, Nykjaer L, Almeida C, Almunia J, Ballesteros S, Basterretxea G, Escánez J, García-Weill L, Hernández-Guerra A, López-Latzen F, Molina R, Montero MF, Navarro-Pérez E, Van Lenning K, Vélez H, Wild K (1998) The transition zone of the Canary Current upwelling region. Prog Oceanogr 41:455–504CrossRefGoogle Scholar
  6. Basterretxea G (1994) Influencia de las estructuras oceanográficas mesoscalares sobre la producción primaria en la región Canaria. PhD thesis, Universidad de Las Palmas de Gran Canaria, Las PalmasGoogle Scholar
  7. Blaxter JHS (1974) The role of light in the vertical migration of fish—a review. In: Evans GC, Bainbridge R, Rackham O (eds) Light as an ecological factor. II. Blackwell, Oxford, pp 189–210Google Scholar
  8. Boden BP, Kampa EM (1967) The influence of natural light on the vertical migrations of an animal community in the sea. Symp Zool Soc Lond 19:15–26Google Scholar
  9. Braun JG (1980) Estudios de producción en aguas de las Islas Canarias. I. Hidrografía, nutrientes y producción primaria. Bol Inst Esp Oceanogr 285:147–154Google Scholar
  10. Braun JG (1981) Estudios de producción en aguas de las Islas Canarias. II. Producción del zooplancton. Bol Inst Esp Oceanogr 290:89–96Google Scholar
  11. Bryan JR, Riley JP, Williams PJleB (1976) A procedure for making precise measurements of oxygen concentration for productivity and related studies. J Exp Mar Biol Ecol 21:191–197Google Scholar
  12. Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44:1370–1380Google Scholar
  13. Carrit DE, Carpenter JH (1966) Comparison and evaluation of currently deployed modifications of the Winkler method for determining dissolved oxygen in seawater: a NASCO report. J Mar Res 24:287–318Google Scholar
  14. Clarke TA (1973) Some aspects of the ecology of lanternfishes (Myctophidae) in the Pacific Ocean near Hawaii. Fish Bull (Wash DC) 71:401–434Google Scholar
  15. Dam HG, Roman MR, Younbluth MJ (1995) Downward export of respiratory carbon and disolved inorganic nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep-Sea Res II 42:1187–1197Google Scholar
  16. De León AR, Braun JG (1973) Ciclo anual de la producción primaria y su relación con los nutrientes en aguas Canarias. Bol Inst Esp Oceanogr 167:3–24Google Scholar
  17. Fernández de Puelles ML (1986) Ciclo anual de la comunidad de meso y microzooplankton, su biomasa, estructura, relaciones tróficas y producción en aguas de Canarias. PhD thesis, Universidad Autónoma, MadridGoogle Scholar
  18. Gaudy R, Champalbert G, Le Borgne R (2003) Feeding and metabolism of mesozooplankton in the equatorial Pacific high-nutrient, low-chlorophyll zone along 180°. J Geophys Res 108:8144–8156CrossRefGoogle Scholar
  19. Gliwicz ZM (1986) A lunar cycle in zooplankton. Ecology 67:883–897Google Scholar
  20. Gómez M, Torres S, Hernández-León S (1996) Modification of the electron transport system (ETS) method for routine measurement of respiratory rate of zooplankton. S Afr J Mar Sci 17:15–20Google Scholar
  21. Grasshoff P, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, Google Scholar
  22. Hernández-León S (1988) Ciclo anual de la biomasa del mesozooplancton sobre un area de plataforma en aguas del Archipiélago Canario. Invest Pesq 52:3–16Google Scholar
  23. Hernández-León S (1998) Annual cycle of epiplanktonic copepods in Canary Island waters. Fish Oceanogr 7:252–257CrossRefGoogle Scholar
  24. Hernández-León S, Gómez M (1996) Factors affecting the respiration/ETS ratio in marine zooplankton. J Plankton Res 18:239–255Google Scholar
  25. Hernández-León S, Llinás O, Braun JG (1984) Nota sobre la variación de la biomasa mesozooplanctónica en aguas del Archipiélago Canario. Invest Pesq 48:495–508Google Scholar
  26. Hernández-León S, Arístegui J, Gómez M, Torres S, Almeida C, Montero MF, Ojeda A (1998) Mesozooplankton metabolism and its effect on chlorophyll and primary production in slope waters of the Canary Islands. Ann Inst Oceanogr 74:127–138Google Scholar
  27. Hernández-León S, Almeida C, Yebra L, Arístegui J, Fernández de Puelles ML, García-Braun J (2001) Zooplankton abundance in subtropical waters: is there a lunar cycle? Sci Mar 65:59–64Google Scholar
  28. Hernández-León S, Almeida C, Yebra L, Arístegui J (2002a) Lunar cycle of zooplankton biomass in subtropical waters: biogeochemical implications. J Plankton Res 24:935–939CrossRefGoogle Scholar
  29. Hernández-León S, Almeida C, Portillo-Hahnefeld A, Gómez M, Rodríguez JM, Arístegui J (2002b) Zooplankton biomass and indices of feeding and metabolism in relation to a filament off the Northwest African Upwelling zone. J Mar Res 60:327–346CrossRefGoogle Scholar
  30. Hopkins TL, Gartner JV (1992) Resource-partitioning and predation impact of a low-latitude myctophid community. Mar Biol 114:185–197Google Scholar
  31. Huntley ME, Lopez MDG (1992) Temperature-dependent production of marine copepods: a global synthesis. Am Nat 140:201–242CrossRefGoogle Scholar
  32. Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM, Tupas LM, Winn CD (1996) Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep-Sea Res II 43:539–568Google Scholar
  33. Kenner RA, Ahmed SI (1975) Measurements of electron transport activities in marine phytoplankton. Mar Biol 33:119–127Google Scholar
  34. Khripounoff A, Vangriesheim A, Crassous P (1998) Vertical and temporal variations of particle fluxes in the deep tropical Atlantic. Deep-Sea Res I 45:193–216Google Scholar
  35. Kinsey ST, Hopkins TL (1994) Trophic strategies of euphausiids in a low-latitude ecosystem. Mar Biol 118:651–661Google Scholar
  36. Kiørboe T, Mohlenberg F, Hamburger K (1985) Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar Ecol Prog Ser 26:85–97Google Scholar
  37. Lenz J, Morales A, Gunkel J (1993) Mesozooplankton standing stock during the North Atlantic spring bloom study 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Res II 40:559–572Google Scholar
  38. Lohrenz SE, Knauer GA, Asper VL, Tuel M, Michaels AF, Knap AH (1992) Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic time-series study. Deep-Sea Res 39:1373–1391Google Scholar
  39. Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123CrossRefGoogle Scholar
  40. Longhurst AR, Williams R (1979) Materials for plankton modelling: vertical distribution of Atlantic zooplankton in summer. J Plankton Res 1:1–28Google Scholar
  41. Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res 37:685–694Google Scholar
  42. Lovegrove T (1966) The determination of the dry weight of plankton and the effect of various factors on the values obtained. In: Barnes H (ed) Some contemporary studies in marine science. Allen and Unwin, London, pp 429–467Google Scholar
  43. Lowry PH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with a Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  44. Luecke C, Wurstbaugh WA (1993) Effects of moonlight and daylight on hydroacoustic estimates of pelagic fish abundance. Trans Am Fish Soc 122:112–120CrossRefGoogle Scholar
  45. Madin LP, Horgan EF, Steinberg DK (2001) Zooplankton at the Bermuda Atlantic time-series study (BATS) station: diel, seasonal and interannual variation in biomass, 1994–1998. Deep-Sea Res II 48:2063–2082Google Scholar
  46. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343Google Scholar
  47. Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710Google Scholar
  48. Menzel DW, Ryther JH (1961) Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. J Cons Int Explor Mer 26:250–258Google Scholar
  49. Michaels AF, Bates NR, Buesseler KO, Carlson CA, Knapp AH (1994) Carbon system imbalances in the Sargasso Sea. Nature 372:537–540Google Scholar
  50. Neuer S, Freudenthal T, Davenport R, Llinás O, Rueda MJ (2002) Seasonality of surface water properties and particle flux along a productivity gradient off NW Africa. Deep-Sea Res II 49:3561–3576Google Scholar
  51. Packard TT, Devol AH, King FD (1975) The effect of temperature on the respiratory electron transport system in marine plankton. Deep-Sea Res 22:237–249Google Scholar
  52. Peterson GL (1983) Determination of total protein. In: Methods of enzymology, vol 91. Academic, New York, pp 95–119Google Scholar
  53. Peterson WT (1988) Rates of egg production by the copepod Calanus marshallae in the laboratory and in the sea off Oregon, USA. Mar Ecol Prog Ser 47:229–237Google Scholar
  54. Pinot JM, Jansá J (2001) Time variability of acoustic backscatter from zooplankton in the Ibiza Channel (western Mediterranean). Deep-Sea Res I 48:1651–1670Google Scholar
  55. Roger C (1974) Influence de la phase et de l’éclairement lunaire sur les répartitions verticales nocturnes superficielles de crustacés macroplanctoniques (Euphausiacea). Cah ORSTOM Ser Oceanogr 12:159–171Google Scholar
  56. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2000) Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res I 47:137–158Google Scholar
  57. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can 167:1–281Google Scholar
  58. Tarling GA, Buchholz F, Matthews JBL (1999) The effect of a lunar eclipse on the vertical migration behaviour of Meganyctiphanes norvegica (Crustacea: Euphausiacea) in the Ligurian Sea. J Plankton Res 21:1475–1488CrossRefGoogle Scholar
  59. UNESCO (1968) Zooplankton sampling. In: Monographs of oceanographic methods, vol 2. UNESCO, ParisGoogle Scholar
  60. Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293Google Scholar
  61. Williams PJleB, Jenkinson NW (1982) A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol Oceanogr 27:576–584Google Scholar
  62. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res 10:221–231Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. Hernández-León
    • 1
  • C. Almeida
    • 1
  • P. Bécognée
    • 1
  • L. Yebra
    • 1
  • J. Arístegui
    • 1
  1. 1.Biological Oceanography Laboratory, Facultad de Ciencias del MarCampus Universitario de TafiraLas Palmas de GCSpain

Personalised recommendations