Marine Biology

, Volume 145, Issue 3, pp 551–561 | Cite as

Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin

  • M. R. DuplessisEmail author
  • S. C. Dufour
  • L. E. Blankenship
  • H. Felbeck
  • A. A. Yayanos
Research Article


Previous nutritional models for adults of the lucinid bivalve Lucinoma aequizonata contend that symbiotic chemoautotrophic bacteria provide most of the organic carbon for the host. The existence of this symbiosis, coupled with the host’s distinctive anatomical features, shaped the impression that particulate feeding was not a significant part of L. aequizonata nutrition. Here, we use several techniques to show that particulate feeding is a consistent and important part of the L. aequizonata nutritional strategy. Histological and scanning electron microscopy observations reveal that the gills of L. aequizonata, like those of the lucinid Parvilucina tenuisculpta, have functional mucociliary epithelia, able to transport captured particles to the mouth. Observations of gut content and radiolabeled feeding experiments indicate that L. aequizonata does ingest and assimilate carbon from particulate organic matter. Furthermore, molecular identification of a broad spectrum of organisms in the guts of native adult specimens demonstrates that L. aequizonata is non-selective when ingesting organic material, and has a mixotrophic diet.


Bivalve Diatom Frustule Visceral Mass Labial Palp Ventral Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank J. Robidart, V. Bowden, and F. Malfatti for help aboard the R.V. “Sproul”, as well as C. Johnson for providing the Dunaliella tertiolecta culture. P.V. Scott helped with bivalve identifications. M. Craig helped with the phylogenetic analysis of gut sequences. R. Chastain, D. Woodruff, B. Brahamsha, and R. Burton all provided suggestions regarding technical aspects of the molecular diet analysis. Special thanks to the captain and crew of the R.V. “Robert Gordon Sproul”. Funding for this research was provided by NSF grants OCE 99-07651 to A.A.Y., OCE 99-07810 to H.F. and J. Stein, a University of California President Dissertation Fellowship and E.W. Scripps Fellowship to M.R.D., an NSERC postgraduate scholarship and a Baxter and Alma Ricard Foundation Fellowship to S.C.D. The experiments comply with the current laws in the USA.

Supplementary material

Table S1 Closest identified relatives of prokaryote 16S rRNA and eukaryote 18S rRNA sequences amplified from Lucinoma aequizonata guts

supp.pdf (250 kb)
(PDF 250 KB)


  1. Allen JA (1953) Function of the foot in the Lucinacea (Eulamellibranchia). Nature 171:1117–1118Google Scholar
  2. Allen JA (1958) On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philos Trans R Soc Lond B Biol Sci 241:421–484Google Scholar
  3. Anderson AE (1995) Metabolic responses to sulfur in lucinid bivalves. Am Zool 35:121–131Google Scholar
  4. Arndt C, Gaill F, Felbeck H (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. J Exp Biol 204:741–750PubMedGoogle Scholar
  5. Beninger PG, Dufour SC (1996) Mucocyte distribution and relationship to particle transport on the pseudolamellibranch gill of Crassostrea virginica (Bivalvia: Ostreidae). Mar Ecol Prog Ser 137:133–138Google Scholar
  6. Beninger PG, St-Jean SD (1997) The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles. Mar Biol 129:389–397CrossRefGoogle Scholar
  7. Beninger PG, St-Jean S, Poussart Y, Ward JE (1993) Gill function and mucocyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Mar Ecol Prog Ser 98:275–282Google Scholar
  8. Beninger PG, Dufour SC, Bourque J (1997) Particle processing mechanisms of the eulamellibranch bivalves Spisula solidissima and Mya arenaria. Mar Ecol Prog Ser 150:157–169Google Scholar
  9. Bretsky SS (1976) Evolution and classification of the Lucinidae (Mollusca; Bivalvia). Palaeontogr Am 8:219–337Google Scholar
  10. Cary SC, Vetter RD, Felbeck H (1989) Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar Ecol Prog Ser 55:31–45Google Scholar
  11. Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC (1985) Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser 23:85–98Google Scholar
  12. Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond B Biol Sci 227:227–247Google Scholar
  13. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329CrossRefPubMedGoogle Scholar
  14. Decho AW, Luoma SN (1996) Flexible digestion strategies and trace metal assimilation in marine bivalves. Limnol Oceanogr 41:568–572Google Scholar
  15. Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucinoma floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86Google Scholar
  16. Donval A, Le Pennec M, Herry A, Diouris M (1989) Nutritional adaptations of littoral bivalve molluscs to reducing biotopes. In: Ryland JS, Tyler PA (eds) Reproduction, genetics and distribution of marine organisms. Olsen and Olsen, Fredensborg, pp 373–378Google Scholar
  17. Dufour SC, Beninger PG (2001) A functional interpretation of cilia and mucocyte distributions on the abfrontal surface of bivalve gills. Mar Biol 138:295–309CrossRefGoogle Scholar
  18. Edgcomb VP, Kysela DT, Teske A, Gomez AD, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662CrossRefPubMedGoogle Scholar
  19. Felbeck H, Childress JJ, Somero GN (1981) Calvin–Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293Google Scholar
  20. Fiala-Médioni A, Michalski J-C, Jollés J, Alonso C, Montreuil J (1994) Lysosomic and lysosome activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci Paris III 317:239–244Google Scholar
  21. Fisher MR, Hand SC (1984) Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biol Bull (Woods Hole) 167:445–459Google Scholar
  22. Frenkiel L, Mouëza M (1995) Gill ultrastructure and symbiotic bacteria in Codakia orbicularis (Bivalvia, Lucinidae). Zoomorphology (Berl) 115:51–61Google Scholar
  23. Gros O, Darrasse A, Durand P, Frenkiel L, Mouëza M (1996a) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330PubMedGoogle Scholar
  24. Gros O, Frenkiel L, Mouëza M (1996b) Gill ultrastructure and symbiotic bacteria in the tropical lucinid, Linga pensylvanica (Linné). Symbiosis 20:259–280Google Scholar
  25. Gros O, Frenkiel L, Mouëza M (1998) Gill filament differentiation and experimental colonization by symbiotic bacteria of aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Rep Dev 34:219–231Google Scholar
  26. Gros O, Duplessis MR, Felbeck H (1999) Embryonic development and endosymbiont transmission mode in the symbiotic clam Lucinoma aequizonata (Bivalvia: Lucinidae). Invertebr Rep Dev 36:93–103Google Scholar
  27. Gros O, Frenkiel L, Felbeck H (2000) Sulfur-oxidizing endosymbiosis in Divaricella quadrisulcata (Bivalvia: Lucinidae): morphological, ultrastructural, and phylogenetic analysis. Symbiosis 29:293–317Google Scholar
  28. Guillard RRL, Ryther JH (1962) Studies on the marine phytoplanktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacae (Cleve) Gran. Can J Microbiol 8:229–239Google Scholar
  29. Hentschel U, Cary SC, Felbeck H (1993) Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata. Mar Ecol Prog Ser 94:35–41Google Scholar
  30. Hentschel U, Millikan DS, Arndt C, Cary SC, Felbeck H (2000) Phenotypic variations in the gills of the symbiont-containing bivalve Lucinoma aequizonata. Mar Biol 136:633–643CrossRefGoogle Scholar
  31. Herry A, Le Pennec M (1987) Endosymbiotic bacteria in the gills of the littoral bivalve molluscs Thyasira flexuosa (Thyasiridae) and Lucinella divaricata (Lucinidae). Symbiosis 4:25–36Google Scholar
  32. Herry A, Diouris M, Le Pennec M (1989) Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101:305–312Google Scholar
  33. Holland ND, Ghiselin MT (1970) A comparative study of gut mucous cells in thirty-seven species of the class Echinoidea (Echinodermata). Biol Bull (Woods Hole) 138:286–305Google Scholar
  34. Jackson JBC (1973) The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bull Mar Sci 23:313–350Google Scholar
  35. Johnson MA, Fernandez C (2001) Bacterial symbiosis in Loripes lucinalis (Mollusca: Bivalvia) with comments on reproductive strategy. J Mar Biol Assoc UK 81:251–257Google Scholar
  36. Johnson MA, Paulet YM, Donval A, Le Pennec M (1996) Histology, histochemistry and enzyme biochemistry in the digestive system of the endosymbiont-bearing bivalve Loripes lucinalis (Lamarck). J Exp Mar Biol Ecol 197:15–38CrossRefGoogle Scholar
  37. Jones GF, Thompson BE (1984) The ecology of Parvilucina tenuisculpta (Carpenter, 1864) (Bivalvia: Lucinidae) on the Southern California Borderland. Veliger 26:188–198Google Scholar
  38. Le Pennec M, Herry A, Diouris M, Moraga D, Donval A (1987) Chemoautotrophie bactérienne chez le mollusque bivalve littoral Lucinella divaricata (Linné). C R Acad Sci Paris III 305:1–5Google Scholar
  39. Le Pennec M, Herry A, Diouris M, Moraga D, Donval A (1988) Chimioautotrophie et nutrition chez les Lucinacea, bivalves littoraux de milieux réducteurs. II. Caractéristiques morphologiques des bactéries symbiotiques et modifications structurales adaptatives des branchies de l’hôte. Haliotis 18:207–217Google Scholar
  40. Liberge M, Gros O, Frenkiel L (2001) Lysosomes and sulfide-oxidizing bodies in the bacteriocytes of Lucina pectinata, a cytochemical and microanalysis approach. Mar Biol 139:401–409CrossRefGoogle Scholar
  41. Medlin LK, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499PubMedGoogle Scholar
  42. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610CrossRefGoogle Scholar
  43. Moore HJ (1971) The structure of latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Mar Biol 11:23–27Google Scholar
  44. Morton B (1979) The biology and functional morphology of the coral-sand bivalve Fimbria fimbriata (Linnaeus, 1758). Rec Austr Mus 32:389–420Google Scholar
  45. Phillips NW (1984) The role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  46. Reid RGB, Brand DG (1986) Sulfide-oxidizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29:3–24Google Scholar
  47. Reid RGB, McMahon RF, Ó Foighil D, Finnigan R (1992) Anterior inhalant currents and pedal feeding in bivalves. Veliger 35:93–104Google Scholar
  48. Ridewood WG (1903) On the structure of the gills of the Lamellibranchia. Philos Trans R Soc Lond B Biol Sci 195:147–284Google Scholar
  49. Schweimanns M, Felbeck H (1985) Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Mar Ecol Prog Ser 24:113–120Google Scholar
  50. Silverman H, Lynn JW, Dietz TH (1996) Particle capture by the gills of Dreissena polymorpha: structure and function of latero-frontal cirri. Biol Bull (Woods Hole) 191:42–54Google Scholar
  51. Silverman H, Lynn JW, Beninger PG, Dietz TH (1999) The role of latero-frontal cirri in particle capture by the gills of Mytilus edulis. Biol Bull (Woods Hole) 197:368–376Google Scholar
  52. Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J Mar Biol Assoc UK 66:889–914Google Scholar
  53. Spicer SS (1963) Histochemical differentiation of mammalian mucopolysaccharides. Ann N Y Acad Sci 106:379–388PubMedGoogle Scholar
  54. Thunell RC (1998) Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California. Deep-Sea Res II 45:1863–1884Google Scholar
  55. Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar Biol 88:33–42Google Scholar
  56. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M. R. Duplessis
    • 1
    • 2
    Email author
  • S. C. Dufour
    • 1
  • L. E. Blankenship
    • 1
  • H. Felbeck
    • 1
  • A. A. Yayanos
    • 1
  1. 1.Marine Biology Research DivisionScripps Institution of OceanographyLa JollaUSA
  2. 2.Department of BiologySeattleUSA

Personalised recommendations