Marine Biology

, Volume 145, Issue 2, pp 373–380

Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck

Research Article

Abstract

Simultaneous hermaphrodites experience unique conflicts of interest during reproduction, some of which are reflected in their complex mating behaviours. We here provide the first detailed description of the mating behaviour of a marine flatworm of the genus Macrostomum, a cosmopolitan group of microturbellaria. Mating in this species is usually initiated by the precopulatory behaviours circling and reeling, then leads to reciprocal copulation where worms mutually insert their copulatory stylet, and often ends in an intriguing postcopulatory sucking behaviour. We provide detailed data on the frequencies and durations of the different behaviours, and examine some biotic and abiotic factors that could influence the mating rate. We further speculate on the function of sucking and suggest that it could be an adaptation for the digestion of sperm and/or the removal of seminal components, which may function as allohormones.

Supplementary material

Video S1 (small)

QuickTime movie (577 KB)

Video S2 (large)

Quick Time Movie (1.4 MB)

Video S3 (small)

Quick Time Movie (660 KB)

Video S4 (large)

Quick Time Movie (1.6 MB)

References

  1. Apelt G (1969) Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar Biol 4:267–325Google Scholar
  2. Ax P, Borkott H (1968) Organisation und Fortpflanzung von Macrostomum romanicum (Turbellaria, Macrostomida). Institut für den wissenschaftlichen Film, GöttingenGoogle Scholar
  3. Baur B (1998) Sperm competition in molluscs. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic, London, pp 255–305Google Scholar
  4. Bojat NC, Sauder U, Haase M (2001) The spermathecal epithelium, sperm and their interactions in the hermaphroditic land snail Arianta arbustorum (Pulmonata, Stylommatophora). Zoomorphology 120:149–157CrossRefGoogle Scholar
  5. Bresslau E (1928) Turbellaria. Walter de Gruyter, BerlinGoogle Scholar
  6. Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373:241–244PubMedGoogle Scholar
  7. Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci 76:2480–2484Google Scholar
  8. Costello HM, Costello DP (1938) Copulation in the acoelous turbellarian Polychoerus carmelensis. Biol Bull (Woods Hole) 75:85–98Google Scholar
  9. Doe DA (1982) Ultrastructure of copulatory organs in Turbellaria. 1. Macrostomum sp. and Microstomum sp. (Macrostomida). Zoomorphology 101:39–60Google Scholar
  10. Faubel A, Blome D, Cannon LRG (1994) Sandy beach meiofauna of eastern Australia (southern Queensland and New South Wales). 1. Introduction and Macrostomida (Platyhelminthes). Invertebr Taxon 8:989–1007Google Scholar
  11. Fischer EA (1980) The relationship between mating system and simultaneous hermaphroditism in the coral reef fish, Hypoplectrus nigricans (Serranidae). Anim Behav 28:620–633Google Scholar
  12. Fischer EA (1987) Mating behavior in the black hamlet gamete trading or egg trading. Environ Biol Fishes 18:143–148Google Scholar
  13. Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208PubMedGoogle Scholar
  14. Giesa S (1966) Die Embryonalentwicklung von Monocelis fusca Oersted (Turbellaria, Proseriata). Z Morphol Oekol Tiere 57:137–230Google Scholar
  15. Greeff JM, Michiels NK (1999) Sperm digestion and reciprocal sperm transfer can drive hermaphrodite sex allocation to equality. Am Nat 153:421–430CrossRefGoogle Scholar
  16. Guillard RR, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacaea (Cleve) Gran. Can J Microbiol 8:229–239Google Scholar
  17. Hallez P (1879) Contibutions a l’histoire naturelle des Turbellariés. Trav Inst Zool Lille Stn Wimereux II:viii+224Google Scholar
  18. Holland B, Rice WR (1999) Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci 96:5083–5088CrossRefPubMedGoogle Scholar
  19. Hyman LH (1937) Reproductive system and copulation in Amphiscolops langerhansi (Turbellaria, Acoela). Biol Bull (Wood Hole) 72:319–326Google Scholar
  20. John CC (1933) Habits, structure and development of Spadella cephaloptera. Q J Microsc Sci 75:625–696Google Scholar
  21. Jondelius U (1998) Flatworm phylogeny from partial 18S rDNA sequences. Hydrobiologia 383:147–154CrossRefGoogle Scholar
  22. Jondelius U, Ruiz-Trillo I, Baguña J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr 31:201–215CrossRefGoogle Scholar
  23. Koene JM, ter Maat A (2001) “Allohormones”: a class of bioactive substances favoured by sexual selection. J Comp Physiol A 187:323–326PubMedGoogle Scholar
  24. Ladurner P, Rieger RM, Baguña J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241CrossRefPubMedGoogle Scholar
  25. Leonard JL, Lukowiak K (1984) Male–female conflict in a simultaneous hermaphrodite resolved by sperm trading. Am Nat 124:282–286CrossRefGoogle Scholar
  26. Littlewood DTJ, Bray RA, Clough KA (1998) A phylogeny of the Platyhelminthes: towards a total-evidence solution. Hydrobiologia 383:155–160CrossRefGoogle Scholar
  27. Meixner J (1938) Turbellaria (Strudelwürmer). I. Allgemeiner Teil. In: Grimpe G, Wagler E, Remane A (eds) Die Tierwelt der Nord- und Ostsee. Akademischer, Leipzig, pp 1–146Google Scholar
  28. Michiels NK (1998) Mating conflicts and sperm competition in simultaneous hermaphrodites. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic, London, pp 219–254Google Scholar
  29. Michiels NK, Bakovski B (2000) Sperm trading in a hermaphroditic flatworm: reluctant fathers and sexy mothers. Anim Behav 59:319–325CrossRefPubMedGoogle Scholar
  30. Michiels NK, Newman LJ (1998) Sex and violence in hermaphrodites. Nature 391:647CrossRefGoogle Scholar
  31. Myers (1935) Behaviour and morphological changes in the leech Placobdella parasitica during hypodermic insemination. JMorphol 57:617–653Google Scholar
  32. Peters A, Streng A, Michiels NK (1996) Mating behaviour in a hermaphroditic flatworm with reciprocal insemination: do they assess their mates during copulation? Ethology 102:236–251Google Scholar
  33. Pitnick S, Brown WD, Miller GT (2001) Evolution of female remating behaviour following experimental removal of sexual selection. Proc R Soc Lond Ser B 268:557–563CrossRefGoogle Scholar
  34. Rieger RM, Gehlen M, Haszprunar G, Holmlund M, Legniti A, Salvenmoser W, Tyler S (1988) Laboratory cultures of marine Macrostomida (Turbellaria). Fortschr Zool 36:523Google Scholar
  35. SAS Institute (1994) JMP statistics and graphics guide, version 3. SAS Institute, Cary, N.C., USAGoogle Scholar
  36. Schärer L, Ladurner P (2003) Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc Lond Ser B 270:935–941CrossRefGoogle Scholar
  37. Schmidt P, Sopott-Ehlers B (1976) Interstitielle Fauna von Galapagos. XV. Macrostomum O. Schmidt, 1948 und Siccomacrostomum triviale nov. gen. nov. spec. (Turbellaria, Macrostomidae). Mikrofauna des Meeresbodens 57:1–45Google Scholar
  38. Sella G (1985) Reciprocal egg trading and brood care in a simultaneous polychaete worm. Anim Behav 33:938–944Google Scholar
  39. Sluys R (1989) Sperm resorption in triclads (Platyhelminthes, Tricladida). Invertebr Reprod Dev 15:89–95Google Scholar
  40. Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DTJ (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc R Soc Lond Ser B 270:1077–1083CrossRefGoogle Scholar
  41. Tyler S (1981) Development of cilia in embryos of the turbellarian Macrostomum. Hydrobiologia 84:231–239Google Scholar
  42. Vreys C, Michiels NK (1997) Flatworms flatten to size up each other. Proc R Soc Lond Ser B 264:1559–1564CrossRefGoogle Scholar
  43. Vreys C, Michiels NK (1998) Sperm trading by volume in a hermaphroditic flatworm with mutual penis intromission. Anim Behav 56:777–785CrossRefPubMedGoogle Scholar
  44. Westheide W (1999) Ultrastructure and functional significance of intestinojunctional spermathecae in enchytraeids (Oligochaeta, Annelida). Hydrobiologia 406:199–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, Institute of Animal Evolution and EcologyUniversity of MünsterMünsterGermany
  2. 2.Department of Biological SciencesMacquarie UniversityNorth Ryde (Sydney)Australia
  3. 3.Division of Ultrastructural Research and Evolutionary Biology, Institute of Zoology and LimnologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations