Marine Biology

, Volume 145, Issue 1, pp 31–39 | Cite as

Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic

  • C. WienckeEmail author
  • M. N. Clayton
  • M. Schoenwaelder
Research Article


Spores of five Laminariales from Arctic Spitsbergen were exposed in the laboratory to photosynthetically active radiation (PAR; 400–700 nm), PAR+UVA radiation (UVAR; 320–400 nm) and PAR+UVAR+UVB radiation (UVBR; 280–320 nm). Subsequently, germination was monitored over periods of 3, 6 and 9 days. The investigated species were the upper sublittoral Saccorhiza dermatodea, the upper to mid-sublittoral Alaria esculenta and Laminaria digitata, the mid-sublittoral L. saccharina and the lower sublittoral L. solidungula. The germination capacity decreased sharply after 16 h exposure to PAR+UVAR+UVBR in all species. However, S. dermatodea was able to recover from the damaging effects of UVBR. There was also a small increase in percentage germination of A. esculenta 6–9 days after the treatment. No recovery was evident in the other species. After 8 h exposure to PAR+UVA+UVB, L. digitata recovered completely, and L. saccharina and L. solidungula, partially. The only species susceptible to PAR+UVAR was L. solidungula. One prominent cytological feature of UVR-exposed spores was the enlargement of phenolic vesicles (physodes) (particularly seen in S. dermatodea and A. esculenta), which may have a protective function against UVR. Pilot experiments under natural irradiance conditions indicate that the PAR component of solar radiation exerts an additional stress. Overall the data show that zoospores of the species from the upper sublittoral are less sensitive to UVR or have the capacity to recover from UV stress in contrast to species from deeper waters, probably due to their UV protective and repair capabilities.


Photosynthetically Active Radiation Germination Rate Outdoor Experiment Ozone Loss Acclimation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed at the Ny Ålesund International Research and Monitoring Facility on Spitsbergen (Svalbard). The authors are grateful to M. Schwanitz, C. Daniel, M. Assmann, H. Wessels and H. Schmidt for providing samples by SCUBA diving, as well as to the staff at Koldewey Station, especially H. Pötschick. The experiments comply with the current laws of Germany and Norway.


  1. Aguilera J, Karsten U, Lippert H, Vögele B, Philipp E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119Google Scholar
  2. Aguilera J, Dummermuth A, Karsten U, Schriek R, Wiencke C (2002) Enzymatic defenses against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441Google Scholar
  3. Altamirano M, Flores-Moya F, Figueroa FL (2000) Long-term effects of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot Mar 43:19–126Google Scholar
  4. Bischof K, Hanelt D., Wiencke C (1998a) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605CrossRefGoogle Scholar
  5. Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998b) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395CrossRefGoogle Scholar
  6. Bischof K, Hanelt D., Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444Google Scholar
  7. Bischof K, Hanelt D, Wiencke C. (2000) UV-effects on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562PubMedGoogle Scholar
  8. Campbell D, Eriksson MJ, Öquist G, Gustafsson P, Clarke AK (1998) The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci 95:364–369CrossRefPubMedGoogle Scholar
  9. Clayton MN, Wiencke C, Schoenwaelder MEA (2004) UV-absorbing compounds in spores of Arctic Laminariales. Eur J Phycol (in press)Google Scholar
  10. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345Google Scholar
  11. Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery 7:317–333CrossRefGoogle Scholar
  12. Collen J, Pedersen M (1996) Production, scavenging and toxicity of hydrogen peroxide in the green seaweed Ulva rigida. Eur J Phycol 31:265–271Google Scholar
  13. Dahlback A (2002) Recent changes in surface ultraviolet solar radiation and stratospheric ozone at a high Arctic site. In: Hessen D (ed) UV radiation and Arctic ecosystems. Springer, Berlin Heidelberg New York, pp 3–22Google Scholar
  14. Dring MJ, Wagner A, Boeskov J, Lüning K (1996a) Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur J Phycol 31:293–302Google Scholar
  15. Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996b) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191Google Scholar
  16. Dummermuth AL, Karsten U, Fisch KM, König, GM, Wiencke C. (2003) Responses of marine macroalgae to hydrogen-peroxide-stress. J Exp Mar Biol Ecol 289:103–121CrossRefGoogle Scholar
  17. Flores-Moya A, Posudin YI, Fernández JA, Figueroa FL, Kawai H (2002) Photomovement of the swarmers of the brown algae Scytosiphon lomentaria and Petalonia fascia: effect of photon irradiance, spectral composition and UV dose. J Photochem Photobiol B 66:134–140CrossRefPubMedGoogle Scholar
  18. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717Google Scholar
  19. Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232CrossRefGoogle Scholar
  20. Gathen P von der, Rex M, Harris NRP, Lucic D, Knudsen BM, Braathen GO, Backer H De, Fabian R, Fast H, Gil M, Kyrö E, Mikkelsen I St, Rummukainen M, Staehelin J, Varotsos C (1995) Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92. Nature 375:131–134CrossRefGoogle Scholar
  21. Groß C, Tüg H, Schrems O (2001) Three years spectral resolved UV-measurements at Koldewey-Station (1997–1999). Mem Natl Inst Polar Res Spec Issue 54:113–123Google Scholar
  22. Han T, Han Y-S, Kim K-Y, Kim J-H, Shin H-W, Kain JM, Callow JA, Callow ME (2003) Influences of light and UV-B on growth and sporulation of the green alga Ulva pertusa Kjellman. J Exp Mar Biol Ecol 4125:1–17Google Scholar
  23. Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47Google Scholar
  24. Hanelt D, Tüg GH, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658Google Scholar
  25. Hanken T, Tüg, H (2002) Development of a multichannel UV-spectroradiometer for field measurements. Environ Sci Pollut Res Spec Issue 4:35–39Google Scholar
  26. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey R, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg SÅ, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland, S (2002) The ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208Google Scholar
  27. Huovinen PS, Oikari AOJ, Soimasuo MR, Cherr GN (2000) Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol 72:308–313PubMedGoogle Scholar
  28. Karsten, U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, Wiencke C (1998) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot Mar 41:443–453Google Scholar
  29. Karsten U, Bischof K, Hanelt D, Tüg H, Wiencke C (1999) The effect of UV radiation on photosynthesis and UV-absorbing substances in the endemic Arctic macroalga Develaraea ramentacea (Rhodophyta). Physiol Plant 105:58–66CrossRefGoogle Scholar
  30. Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters followed by exposure to natural solar radiation. Oecologia 127:11–20CrossRefGoogle Scholar
  31. Lüning K (1980) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:1–15Google Scholar
  32. Makarov MV, Voskoboinikov GM (2001) The influence of ultraviolet-B radiation on spore release and growth of the kelp Laminaria saccharina. Bot Mar 44:89–94Google Scholar
  33. Máté Z, Sass L, Szekeres M, Vass I, Nagy F (1998) UV-B induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J Biol Chem 273:17439–17444PubMedGoogle Scholar
  34. Pakker H, Beekman CAC, Breeman AM (2000a) Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta). Eur J Phycol 35:109–114CrossRefGoogle Scholar
  35. Pakker H, Martins RST, Boelen P, Buma AGJ, Nikaido O, Breeman AM (2000b) Effects of temperature on the photoreactivation of ultraviolet-B-induced DNA damage in Palmaria palmata (Rhodophyta). J Phycol 36:334–341CrossRefGoogle Scholar
  36. Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 193:285–294Google Scholar
  37. Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146Google Scholar
  38. Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217Google Scholar
  39. Poll WH van de, Bischof, K, Buma AGJ, Breeman AM (2002a) Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiol Plant 118:74–83Google Scholar
  40. Poll WH van de, Eggert A, Buma AGJ, Breeman AM (2002b) Effects of UV-B induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitat-related differences in UV-B tolerance. J Phycol 37:30–37CrossRefGoogle Scholar
  41. Poll WH van de, Eggert A, Buma AGJ, Breeman AM (2002c) Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes. Eur J Phycol 37:59–68CrossRefGoogle Scholar
  42. Poll WH van de, Hanelt D, Hoyer K, Buma AGJ, Breeman AM (2002d) Ultraviolet-B induces cyclobutane-pyrimidine dimer formation and repair in Arctic marine macrophytes. Photochem Photobiol 76:493–501PubMedGoogle Scholar
  43. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phychological research 4. Biopress, Bristol, pp 129-241Google Scholar
  44. Rex M, Salawitch RJ, Harris NRP, Gathen P von der, Braathen GO, Schulz A, Deckelmann H, Chipperfield M, Sinnhuber BM, Reimer E, Alfier R, Bevilacqua R,Hoppel K, Fromm M, Lumpe J, Küllmann H,Kleinböhl A, Bremer H, König M, Künzi K, Toohey D, Vömel H, Richard E, Aikin K, Jost H, Greenblatt JB, Loewenstein M, Podolske JR, Webster CR, Flesch GJ, Scott DC, Herman R, Margitan L, Elkins JW, Ray EA, Moore FL, Hurst DF, Romashkin P, Toon GC, Sen BJJ, Wennberg P, Neuber R, Allart M, Bojkov RB, Claude H, Davies J, Davies W, Backer H, de Dier H, Dorokhov V, Fast, H, Kondo Y, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MJ, Moran E, Murphy G, Nagai T, Nakane H, Parrondo C, Ravegnani F, Skrivankova P, Viatte P, Yushkov V (2002) Chemical loss of Arctic ozone in winter. 1999/2000. J Geophys Res 107/D20:8276Google Scholar
  45. Roy CR, Gies HP, Elliot G (1990) Ozone depletion. Nature 347:235–6CrossRefGoogle Scholar
  46. Schoenwaelder ME (2002a) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139Google Scholar
  47. Schoenwaelder ME (2002b) Physode distribution and the effect of ‘thallus sunburn’ in Homosira banksii (Fucales, Phaeophyceae). Bot Mar 45:262–266Google Scholar
  48. Solomon S (1999) Statospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316Google Scholar
  49. Staehelin J, Harris NRP, Appenzeller C, Eberhard J (2001) Ozone trends: a review. Rev Geophys 39:231–290Google Scholar
  50. Starr RC, Zeikus JA (1987) UTEX—The cultural collection of algae at the University of Texas at Austin. J Phycol [Suppl] 23:1–47Google Scholar
  51. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  52. Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D Bischof, K, Figueroa FL (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1. Alfred Wegener Institute for Polar and Marine Research BremerhavenGermany
  2. 2.School of Biological SciencesMonash UniversityClaytonAustralia
  3. 3.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations