Marine Biology

, Volume 144, Issue 5, pp 829–839

Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local conditions?

  • J. M. Raguá-Gil
  • J. Gutt
  • A. Clarke
  • W. E. Arntz
Research Article

Abstract

The mega-epibenthos of two different geographic areas, the Antarctic Peninsula and the high Antarctic (eastern Weddell Sea), were investigated using underwater video. The distribution of the marine fauna at shallow depths between 55 and 160 m in these two areas was investigated to determine whether there are any zoogeographic differences at the community level. A total of 237 taxa represented by 85,538 individuals was identified. Multivariate analyses revealed significant faunal differences between northern Marguerite Bay (western Antarctic Peninsula) and the stations from the Weddell Sea, Atka Bay and Four-Seasons Bank. Echinoderms, especially ophiuroids, dominated Marguerite Bay, bryozoans and ascidians were abundant at Atka Bay, and hydroids and gorgonians were well represented at Four-Seasons Bank. These clear differences can mainly be explained by the influence of local environmental conditions that are probably the primary feature responsible in shaping the Antarctic shallow-water epifauna and not an intensive exchange with larger depths or a limited dispersion due to scarce and isolated shallow areas. In addition, modes of reproduction and characteristics of the early life history (e.g. brooding, viviparity or budding) of key taxa may also shape patterns of species distribution in shallow benthic Antarctic communities.

References

  1. Allcock AL, Brierley AS, Thorpe JP, Rodhouse PG (1997) Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102CrossRefGoogle Scholar
  2. Arntz WE, Brey T (2001) The Expedition ANTARKTIS XVII/3 (EASIZ III) of RV “Polarstern” in 2000. Ber Polarforsch Meeresforsch 402:1–181Google Scholar
  3. Arntz WE, Gutt J (1997) The Expedition ANTARKTIS XIII/3 (EASIZ I) of “Polarstern” to the eastern Weddell Sea in 1996. Ber Polarforsch 249:1–148Google Scholar
  4. Arntz WE, Gutt J (1999) The Expedition ANTARKTIS XV/3 (EASIZ II) of RV “Polarstern” in 1998. Ber Polarforsch 301:1–229Google Scholar
  5. Arntz WE, Brey T, Gerdes D, Gorny M, Gutt J, Hain S, Klages M (1992) Patterns of life history and population dynamics of benthic invertebrates under the high Antarctic conditions of the Weddell Sea. In: Colombo G, Ferrari I, Ceccherelli UV, Rossi R (eds) Marine eutrophication and population dynamics. Proc 25th Eur Mar Biol Symp. Olsen and Olsen, Fredensborg, Denmark, pp 221–230Google Scholar
  6. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304Google Scholar
  7. Barnes DKA, Bullogh LW (1996) Some observations on the diet and distribution of nudibranchs at Signy Island, Antarctica. J Mollusc Stud 62:281–287Google Scholar
  8. Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarctic Sci 4:137–150Google Scholar
  9. Beckmann A (1999) Dynamical processes at isolated seamounts. “Habilitation” thesis including six published papers, Physics Department, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany, pp 1–87Google Scholar
  10. Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602CrossRefGoogle Scholar
  11. Bonn W, Gingele F, Grobe H, Hillenbrandt CD (1996) Marine Geologie, Sedimentologie. In: Miller H, Grobe H (eds) Die Expedition ANTARKTIS XI/3 mit FS “Polarstern” 1994. Ber Polarforsch 188:18–20Google Scholar
  12. Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull (Woods Hole) 173:126–135Google Scholar
  13. Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope (Antarctica): distribution, abundance and biomass. Polar Biol 11:227–232Google Scholar
  14. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz W (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8:3–6Google Scholar
  15. Cattaneo-Vietti R, Chiantore M, Albertelli G (1997) The population structure and ecology of the Antarctic scallop Adamussium colbecki (Smith, 1902) at Terra Nova Bay (Ross Sea, Antarctica). Sci Mar 61[Suppl 2]:15–24Google Scholar
  16. Cattaneo-Vietti R, Chiantore M, Schiaparelli S, Albertelli G (2000) Shallow- and deep-water mollusc distribution at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 23:173–182CrossRefGoogle Scholar
  17. Clarke A (1996a) Benthic marine habitats in Antarctica. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. Antarctic Res Ser 70:123–133Google Scholar
  18. Clarke A (1996b) The distribution of Antarctic marine benthic communities. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. Antarctic Res Ser 70:219–230Google Scholar
  19. Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geol Soc Spec Publ 47:253–268Google Scholar
  20. Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos Trans R Soc Lond B Biol Sci 338:299–309Google Scholar
  21. Clarke A, Crame JA (1997) Diversity, latitude and time: patterns in the shallow sea. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity: patterns and processes. Cambridge University Press, Cambridge, pp 122–147Google Scholar
  22. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143Google Scholar
  23. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial PRIMER-E. Plymouth Marine Laboratory, Plymouth, UKGoogle Scholar
  24. Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226Google Scholar
  25. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, Plymouth Marine Laboratory, Plymouth, UKGoogle Scholar
  26. Dawber M, Powell RD (1997) Epifaunal distribution at Antarctic marine-ending glaciers: influences of ice dynamics and sedimentation. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 875–884Google Scholar
  27. Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486Google Scholar
  28. Dayton PK, Oliver JS (1977) Antarctic soft bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58Google Scholar
  29. Dayton PK, Robilliard GA, Paine RT (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, pp 244–258Google Scholar
  30. Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–128Google Scholar
  31. Discovery Committee Colonial Office (1929–1980) Discovery reports, vols 1–37. Cambridge University Press, CambridgeGoogle Scholar
  32. Drewry DJ (1983) Antarctic: glaciological and geological folio, sheet 1. Scott Polar Research Institute, CambridgeGoogle Scholar
  33. Fahrbach EG, Rohardt G, Krause G (1992) The Antarctic coastal current in the southeastern Weddell Sea. Polar Biol 12:171–182Google Scholar
  34. Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52Google Scholar
  35. Genin A, Dayton PK, Lonsdale PF, Spiess FN (1986) Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322:59–61Google Scholar
  36. Gordon AL, Mensch M, Dong Z, Smethie Jr WM, de Bettencourt J (2000) Deep and bottom waters of the Bransfield Strait eastern and central basins. J Geophys Res 105:11337–11346CrossRefGoogle Scholar
  37. Grassle JF, Sanders HL (1973) Life histories and the role of disturbance. Deep-Sea Res 20:643–659Google Scholar
  38. Grosfeld K, Hinze H, Ritter B, Schenke HW, Sievers J, Thyssen F (1989) Maps of ice shelf kinematics. Topographic map and satellite image map, 1:500 000. Ekströmisen SR 29-30/SW Antarktis, Institut für Angewandte Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  39. Gruzov EN (1977) Seasonal alterations in coastal communities in the Davis Sea. In: Llano GA (ed) Adaptation within Antarctic ecosystems. Gulf Publishing, Houston, pp 263–278Google Scholar
  40. Gutt J (1991) Are Weddell Sea holothurians typical representatives of the Antarctic benthos? Meeresforschung 33:312–329Google Scholar
  41. Gutt J (2000) Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos. Antarctic Sci 12:297–313Google Scholar
  42. Gutt J, Koltun VM (1995) Sponges of the Lazarev and Weddell Sea, Antarctica: explanations for their patchy occurrence. Antarctic Sci 7:227–234Google Scholar
  43. Gutt J, Schickan T (1998) Epibiotic relationships in the Antarctic benthos. Antarctic Sci 10:398–405Google Scholar
  44. Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247CrossRefGoogle Scholar
  45. Gutt J, Sirenko BI, Arntz WE, Smirnov IS, De Broyer C (2000) Biodiversity of the Weddell Sea: macrozoobenthic species (demersal fish included) sampled during the expedition ANT XIII/3 (EASIZ I) with RV “Polarstern”. Ber Polarforsch 372:1–103Google Scholar
  46. Hamada E, Numanami H, Naito Y, Taniguchi A (1986) Observation of the marine benthic organisms at Syowa station in Antarctica using a remotely operated vehicle. Mem Natl Inst Polar Res (Jpn) 40[Spec Issue]:289–298Google Scholar
  47. Harris PT, O’Brien PE (1996) Geomorphology and sedimentology of the continental shelf adjacent to Mac. Robertson Land, East Antarctica: a scalped shelf. Geo-Mar Lett 16:287–296Google Scholar
  48. Hedgpeth JW (1971) Perspectives of benthic ecology in Antarctica. In: Quam Lo (ed) Research in the Antarctic. American Association for the Advancement of Science, Washington, D.C., pp 93–136Google Scholar
  49. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 135–139Google Scholar
  50. Hofmann EE, Klinck JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. Antarct Res Ser 70:61–80Google Scholar
  51. Kennedy DS, Anderson JB (1989) Glacial-marine sedimentation and quaternary glacial history of Marguerite Bay, Antarctic Peninsula. Quat Res (Orlando) 31:255–276Google Scholar
  52. Klages M (1993) Distribution, reproduction and population dynamics of the Antarctic gammaridean amphipod Eusirus perdentatus Chevreux, 1912 (Crustacea). Antarct Sci 5:349–359Google Scholar
  53. Klages M, Gutt J, Starmans A, Bruns T (1995) Stone crabs close to the Antarctic continent: Lithodes murrayi Henderson, 1888 (Crustacea; Decapoda; Anomura) off Peter I Island (68°51′S, 90°51′W). Polar Biol 15:73–75Google Scholar
  54. Koltun VM (1969) Porifera. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series: distribution of selected groups of marine invertebrates in waters south of 35°S latitude, folio 11. American Geographical Society, New YorkGoogle Scholar
  55. Kott P (1969) Ascidiacea. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series: distribution of selected groups of marine invertebrates in waters south of 35°S latitude, folio 11. American Geographical Society, New YorkGoogle Scholar
  56. Lipps JH, Hickman CS (1982) Origin, age and evolution of Antarctic and deep-sea faunas. In: Ernst WG, Morin JG (eds) The environment of the deep sea. Prentice Hall, Engelwoods Cliffs, N.J., pp 325–356Google Scholar
  57. López-González PJ, Gili JM, Orejas C (2002) A new primnoid (Anthozoa: Octocorallia) from the Southern Ocean. Sci Mar 6:383–397Google Scholar
  58. Malatesta RJ, Auster PJ, Carlin BP (1992) Analysis of transect data for microhabitat correlations and faunal patchiness. Mar Ecol Prog Ser 87:189–195Google Scholar
  59. Molander AR (1929) Die Octactiniarien. Further zoological results of the Swedish Antarctic Expedition, 1901–1903, vol II, no.2. Norstedt, Stockholm, pp 1–86Google Scholar
  60. Orejas C, López-González PJ, Gili JM, Teixidó N, Gutt J, Arntz WE (2002) Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticus in the Weddell Sea. Mar Ecol Prog Ser 231:101–114Google Scholar
  61. Pansini M, Calcinai B, Cattaneo-Vietti R, Sarà M (1994) Demosponges from Terra Nova Bay (Ross Sea, Antartica): 1987/88 and 1989/90 P.N.R.A. expeditions. In: Faranda F, Guglielmo L (eds) Ross Sea (expeditions 1987/88 and 1989/90), Straits of Magellan (expedition 1991). Data report, part III. National Scientific Commission for Antarctica, Genova, pp 67–100Google Scholar
  62. Pawson DL (1969) Echinoidea. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series: distribution of selected groups of marine invertebrates in waters south of 35°S latitude, folio 11. American Geographical Society, New YorkGoogle Scholar
  63. Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes and timing. Am Zool 31:65–80Google Scholar
  64. Peña Cantero AL (1998) Two new Antarctic species of the genus Schizotricha Allman, 1883 (Cnidaria, Hydrozoa). Polar Biol 19:77–84CrossRefGoogle Scholar
  65. Peña Cantero AL, Vervoort W (1998) On two new species of Oswaldella Stechow, 1919 (Cnidaria, Hydrozoa) from Bransfield Strait (Antarctica). Polar Biol 20:33–40CrossRefGoogle Scholar
  66. Poulin È, Féral JP (1994) The fiction and facts of Antarctic brood protecting: population genetics and evolution of schizasterid echinoids. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. Proceedings of the 8th international echinoderm conference. Balkema, Rotterdam, pp 837–844Google Scholar
  67. Poulin È, Palma AT, Féral JP (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222CrossRefGoogle Scholar
  68. Propp MV (1970) The study of bottom fauna at Haswell Islands by Scuba Diving. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, pp 239–241Google Scholar
  69. Rogers AD (1994) The biology of seamounts. Adv Mar Biol 30:305–350Google Scholar
  70. Sará M, Balduzzi A, Barbieri M, Bavestrello G, Burlando B (1992) Biogeographic traits and checklist of Antarctic demosponges. Polar Biol 12:559–585Google Scholar
  71. Sieg J, Wägele JW (1990) Fauna der Antarktis. Parey, BerlinGoogle Scholar
  72. Slattery M, McClintock JB (1995) Population structure and feeding deterrence in three shallow-water Antarctic soft corals. Mar Biol 122:461–470Google Scholar
  73. Slattery M, McClintock JB (1997) An overview of the population biology and chemical ecology of three species of Antarctic soft corals. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 309–315Google Scholar
  74. Starmans A, Gutt J (2002) Mega-epibenthic diversity: a polar comparison. Mar Ecol Prog Ser 225:45–52Google Scholar
  75. Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280CrossRefGoogle Scholar
  76. Stepaniants SD (1980) Some ecological peculiarities of the hydroid Tubularia ralphii Bale, 1884, in Antarctic waters (from the material of the 16th Soviet Antarctic expedition). In: Naumov DB, Stepaniants SD (eds) Theoretical and practical significance of coelenterates. Leningrad, pp 109–113Google Scholar
  77. Thomson CW, Murray J (1880–1889) Reports on the scientific results of the voyage of HMS Challenger during the years 1873–76. Zoology, vols 1–32. Neill, EdinburghGoogle Scholar
  78. Voß J (1988) Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis). Ber Polarforsch 45:1–145Google Scholar
  79. Wägele JW (1992) Zoosystematic research in animals of polar regions. Benthic ecology in the Southern Ocean and the biology and evolution of Antarctic Isopoda (Crustacea: Peracarida). Verh Dtsch Zool Ges 85:259–270Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. M. Raguá-Gil
    • 1
  • J. Gutt
    • 1
  • A. Clarke
    • 2
  • W. E. Arntz
    • 1
  1. 1.Alfred-Wegener-Institute für Polar- und MeeresforschungColumbusstraßeBremerhavenGermany
  2. 2.British Antarctic SurveyCambridgeUK

Personalised recommendations