Advertisement

Marine Biology

, Volume 144, Issue 3, pp 605–617 | Cite as

Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea)

  • Bernard L. Cohen
  • Nadia Améziane
  • Marc Eleaume
  • Bertrand Richer de Forges
Research Article

Abstract

We describe the first molecular and morphological analysis of extant crinoid high-level inter-relationships. Nuclear and mitochondrial gene sequences and a cladistically coded matrix of 30 morphological characters are presented, and analysed by phylogenetic methods. The molecular data were compiled from concatenated nuclear-encoded 18S rDNA, internal transcribed spacer 1, 5.8S rDNA, and internal transcribed spacer 2, together with part of mitochondrial 16S rDNA, and comprised 3,593 sites, of which 313 were parsimony-informative. The molecular and morphological analyses include data from the bourgueticrinid Bathycrinus; the antedonid comatulids Dorometra and Florometra; the cyrtocrinids Cyathidium, Gymnocrinus, and Holopus; the isocrinids Endoxocrinus, and two species of Metacrinus; as well as from Guillecrinus and Caledonicrinus, whose ordinal relationships are uncertain, together with morphological data from Proisocrinus. Because the molecular data include indel-rich regions, special attention was given to alignment procedure, and it was found that relatively low, gene-specific, gap penalties gave alignments from which congruent phylogenetic information was obtained from both well-aligned, indel-poor and potentially misaligned, indel-rich regions. The different sequence data partitions also gave essentially congruent results. The overall direction of evolution in the gene trees remains uncertain: an asteroid outgroup places the root on the branch adjacent to the slowly evolving isocrinids (consistent with palaeontological order of first appearances), but maximum likelihood analysis with a molecular clock places it elsewhere. Despite lineage-specific rate differences, the clock model was not excluded by a likelihood ratio test. Morphological analyses were unrooted. All analyses identified three clades, two of them generally well-supported. One well-supported clade (BCG) unites Bathycrinus and Guillecrinus with the representative (chimaeric) comatulid in a derived position, suggesting that comatulids originated from a sessile, stalked ancestor. In this connection it is noted that because the comatulid centrodorsal ossicle originates ontogenetically from the column, it is not strictly correct to describe comatulids as “unstalked” crinoids. A second, uniformly well-supported clade contains members of the Isocrinida, while the third clade contains Gymnocrinus, a well-established member of the Cyrtocrinida, together with the problematic taxon Caledonicrinus, currently classified as a bourgueticrinid. Another cyrtocrinid, Holopus, joins this clade with only weak molecular, but strong morphological support. In one morphological analysis Proisocrinus is weakly attached to the isocrinid clade. Only an unusual, divergent 18S rDNA sequence was obtained from the morphologically strange cyrtocrinid Cyathidium. Although not analysed in detail, features of this sequence suggested that it may be a PCR artefact, so that the apparently basal position of this taxon requires confirmation. If not an artefact, Cyathidium either diverged from the crinoid stem much earlier than has been recognised hitherto (i.e., it may be a Palaeozoic relic), or it has an atypically high rate of molecular evolution.

Keywords

Cladistic Analysis Taxon Sample Relative Rate Test Morphological Tree Root Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to J.M. Bohn, University of Munich, for the specimen of Bathycrinus and to the master and crew of R.V. “Alis” (IRD, Nouméa) for dredge and trawl samples. We are also indebted to J. Wilgenbusch (University of South Florida) for access to version 4.11 of PAUP* and to M. Robinson (University of Lyon) for a version of RRTree. A. Scouras (Simon Frazer University, Burnaby, BC, Canada) kindly provided DNA of Florometra together with 16S primer sequences and aliquots, and access to unpublished 16S sequences (e.g., of Gymnocrinus). Valuable advice, and criticism of an earlier version of this paper, were provided by D. Meyer (University of Cincinnati); M.J. Simms (National Museum of Wales), M.-C. Boisselier and F. Pleijel (Museum Nationale d’Histoire Naturelle, Paris), and S. Samadi (IRD, Nouméa). Three anonymous referees provided carefully detailed reviews of the submitted manuscript. B.L.C received travel grants from the Carnegie Trust for the Universities of Scotland and the John Robertson Bequest to the Senate of the University of Glasgow.

Supplementary material

GB 0.91 Results: 3-gene alignment

info1.pdf (412 kb)
(PDF 400 KB)

Morphological data matrix

info2.txt (2 kb)
(txt 2.5 KB)

References

  1. Amemiya S, Oji T (1992) Regeneration in sea lilies. Nature 357:546–547CrossRefGoogle Scholar
  2. Améziane N, Roux M (1997) Biodiversity and historical biogeography of stalked crinoids (Echinodermata) in the deep sea. Biodivers Conserv 6:1557–1570CrossRefGoogle Scholar
  3. Améziane N, Roux M (2003) Environmental control of ontogeny in the stalked crinoid Guillecrinus. In: Féral JP, David B (eds) Echinoderm research 2001. Swets and Zeitlinger, Lisse, pp 143–148Google Scholar
  4. Améziane-Cominardi N, Bourseau JP, Roux M. (1990) Les crinoïdes pédonculés de Nouvelle Calédonie: inventaire et réflexions sur les taxons archaïques. In: De Ridder C, Dubois P, Lahaye MC, Jangoux M (eds) Echinoderm research. Balkema, Rotterdam, pp 117–124Google Scholar
  5. Améziane N, Bourseau P, Heinzeller T, Roux M (1999) Les genres Cythidium et Holopus au sein des Cyrtocrinida (Crinodea: Echinodermata). J Nat Hist 33:439–470CrossRefGoogle Scholar
  6. Arndt A, Marquez C, Lambert P, Smith MJ (1996) Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea). Mol Phylogenet Evol 6:425–437CrossRefPubMedGoogle Scholar
  7. Ausich WI, Kammer TW (2001) The study of crinoids during the 20th century and the challenges of the 21st century. J Paleontol 75:1161–1173Google Scholar
  8. Bourseau J-P, Améziane-Cominardi N, Roux M (1987) Un crinoïde pédonculé nouveau (Echinodermes), présentant actuel de la famille jurassique des Hemicrinidae: Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle-Calédonie (S.W. Pacifique). C R Acad Sci Paris Ser III 305:595–599Google Scholar
  9. Bourseau J-P, Améziane-Cominardi N, Avocat R (1991) Echinodermata: les Crinoïdes pédonculés de Nouvelle-Calédonie. In: Crosnier A (ed) Résultats des campagnes MUSORSTOM, Vol. 8;. Mem Mus Nat Hist Nat Paris, pp 229–333Google Scholar
  10. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  11. Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474PubMedGoogle Scholar
  12. Carnevali MDC, Bonasoro F (2001) Introduction to the biology of regeneration in echinoderms. Microsc Res Tech 55:365–368CrossRefPubMedGoogle Scholar
  13. Castresana J, Feldmaier-Fuchs G, Yokobori S, Satoh N, Pääbo S (1998) The mitochondrial genome of the Hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123PubMedGoogle Scholar
  14. Clark AH, Clark AM (1967) A monograph of the existing crinoids, 1 (5). Bull US Natl Mus 82:1–690Google Scholar
  15. Cohen BL, Gawthrop AB, Cavalier-Smith T (1998) Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philos Trans R Soc B 353:2039–2061CrossRefGoogle Scholar
  16. Coleman AW, Vaquier VD (2002) Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J Mol Evol 54:246–257CrossRefPubMedGoogle Scholar
  17. Cullings KW, Vogler DR (1998) A 5.8S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution. Mol Ecol 7:919–923PubMedGoogle Scholar
  18. Donovan SK, Pawson DL (1997) Proximal growth of the column in bathycrinid crinoids (Echinodermata) following decapitation. Bull Mar Sci 61:571–579Google Scholar
  19. Farris JS (1969) A successive approximations approach to character weighting. Syst Zool 18:374–385Google Scholar
  20. Gilbert D (1993) SeqApp. Available by FTP from Molecular Biology Software Archive, University of Indiana, BloomingtonGoogle Scholar
  21. Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates, and the position of Gnathostomulida, Cycliophora, Plathelminthes and Chaetognatha; a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562CrossRefPubMedGoogle Scholar
  22. Hall BG (2001) Phylogenetic trees made easy. Sinauer, Sunderland, Mass.Google Scholar
  23. Hershkovitz MA, Lewis LA (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13:1276–1295PubMedGoogle Scholar
  24. Hess H, Ausich WI, Brett CE, Simms MJ (1999) Fossil crinoids. Cambridge University Press, CambridgeGoogle Scholar
  25. Hickson RE, Simon S, Perrey SW (2000) The performance of several multiple-alignment programs in relation to secondary structure features for an rRNA sequence. Mol Biol Evol 17:530–539PubMedGoogle Scholar
  26. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedGoogle Scholar
  27. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195PubMedGoogle Scholar
  28. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. Sinauer, Sunderland, Mass.Google Scholar
  29. Huelsenbeck JP, Ronquist FR (1999) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  30. Janies DA, Mooi RJ (1998) Xyloplax is an asteroid. In Carevali C, Bonasoro F (eds) Echinoderm research. Balkema, Rotterdam, pp 311–316Google Scholar
  31. Jenner RA (2002) Boolean logic and character-state identity: pitfalls of character coding in metazoan cladistics. Contrib Zool 71:67–91Google Scholar
  32. Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladistics. Oxford University Press, OxfordGoogle Scholar
  33. Lee MSY (2001) Uninformative characters and apparent conflict between molecules and morphology. Mol Biol Evol 18:676–680PubMedGoogle Scholar
  34. Littlewood DTJ, Smith AB (1995) A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos Trans R Soc B 347:213–234Google Scholar
  35. Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc 61:409–438CrossRefGoogle Scholar
  36. Lüter C, Cohen BL (2002) DNA sequence evidence for speciation, Mesozoic dispersal and paraphyly in cancellothyridid articulate brachiopods. Mar Biol 141:65–74CrossRefGoogle Scholar
  37. Lydeard C, Holznagel WE, Schnare MN, Gutell RR (2000) Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structure. Mol Phylogenet Evol 15:83–102CrossRefPubMedGoogle Scholar
  38. Macurda DB, Meyer DL (1975) The microstructure of the crinoid endoskeleton. Univ Kans Paleontol Contrib Pap 74:1–22Google Scholar
  39. Macurda DB, Meyer DL (1976) The morphology and life habit of the abyssal crinoid Bathycrinus aldrichianus Wyville Thomson and its paleontological implications. J Paleontol 50:647–667Google Scholar
  40. Maddison DR, Maddison WP (2001) MacClade 4: Analysis of phylogeny and character evolution. Sinauer, Sunderland, Mass.Google Scholar
  41. Maddison WP, Maddison DR (1989) Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia Primatol 53:190–202PubMedGoogle Scholar
  42. Maddison WP, Maddison DR (1992) MacClade. Sinauer, Sunderland, Mass.Google Scholar
  43. Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103Google Scholar
  44. McCallum F, Maden BEH (1985) Human 18S ribosomal RNA sequence inferred from DNA sequence. Biochem J 232:725–733PubMedGoogle Scholar
  45. McCormack GP, Keegan BF, McInerney JO, Powell R (2000) Spectral analysis of echinoderm small subunit ribosomal RNA gene sequences. Mol Phylogenet Evol 15:327–329CrossRefPubMedGoogle Scholar
  46. Messing CG (1997) Living comatulids. In: Waters JA, Maples CG (eds) Geobiology of echinoderms. Paleontological Society, London, pp 3–30Google Scholar
  47. Mironov AN, Sorokina OA (1998) Sea lilies of the order Hyocrinida (Echinodermata: Crinoidea). Zoologicheskielsledovania (Moscow) 2:1–117Google Scholar
  48. Mooi R, David B (1997) Skeletal homologies of echinoderms. In: Waters JA, Maples CG (eds) Geobiology of echinoderms. Paleontological Society, London, pp 305–335Google Scholar
  49. Mooi R, David B (1998) Evolution within a bizarre phylum: homologies of the first echinoderms. Am Zool 38:965–974Google Scholar
  50. Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: Davil B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95Google Scholar
  51. Nakano H, Hibino T, Oji T, Hara Y, Amemiya S (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160CrossRefPubMedGoogle Scholar
  52. Oji T (1989) Distribution of the stalked crinoids from Japanese and nearby waters. In: Ohba H, Hayami I, Mochizuki K (eds) Current aspects of biogeography in West Pacific and East Asian regions. University Museum, University of Tokyo, Tokyo, pp 27–43Google Scholar
  53. Oji T, Amemiya S (1998) Survival of crinoid stalk fragments and its taphonomic significance. Palaeontol Res 2:67–70Google Scholar
  54. Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms. Biol Rev 59:443–481Google Scholar
  55. Pleijel F (1995) On character coding for phylogeny reconstruction. Cladistics 11:309–315Google Scholar
  56. Posada D (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601CrossRefPubMedGoogle Scholar
  57. Posada D, Crandall KP (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  58. Rasmussen HW (1978a) Articulata. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Echinodermata 2. Geological Society of America and University of Kansas, Boulder, Colo. and Lawrence, Kan., pp T813–T998Google Scholar
  59. Rasmussen HW (1978b) Evolution of articulate crinoids. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Echinodermata 2. Geological Society of America and University of Kansas, Boulder, Colo. and Lawrence, Kan., pp T302–T316Google Scholar
  60. Robinson M, Gouy M, Gautier C, Mouchiroud D (1998) Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15:1091–1098PubMedGoogle Scholar
  61. Roux M (1978) Ontogenèse et évolution des crinoïdes pédonculés depuis le Trias. Implications oceanographiques. Doctorat ès Sciences nat., ParisGoogle Scholar
  62. Roux M (1997) Classification et ontogenèse chez les crinoïdes: une révision nécessaire de la hiérarchie des caractères. Bull Soc Zool Fr 122:371–378Google Scholar
  63. Roux M, Messing CG, Améziane N (2002) Artificial keys to the genera of living stalked crinoids (Echinodermata). Bull Mar Sci 70:799–830Google Scholar
  64. Saito M, Endo K (2001) Molecular phylogeny and morphological evolution of laqueoid brachiopods. Paleontol Res 5:87–100Google Scholar
  65. Saito M, Endo K, Cohen BL (2001) Molecular phylogenetics and evolution of long-looped brachiopods. In: Brunton CHC, Cocks R, Long S (eds) Brachiopods past and present. Taylor and Francis, London, pp 129–137Google Scholar
  66. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, NYGoogle Scholar
  67. Scotland R, Pennington T (2000) Homology and systematics. Taylor and Francis, LondonGoogle Scholar
  68. Scouras W, Smith MJ (2001) A novel mitochondrial gene order in the crinoid echinoderm, Florometra serratissima. Mol Biol Evol 18:61–73PubMedGoogle Scholar
  69. Simms MJ (1988) The phylogeny of post-Palaeozoic crinoids. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford, pp 269–284Google Scholar
  70. Simms MJ (1999) Systematics, phylogeny and evolutionary history. In: Hess H, Ausich WI, Brett CE, Simms MJ (eds) Fossil crinoids. Cambridge University Press, Cambridge, pp 31–40Google Scholar
  71. Simms MJ, Sevastopulo GD (1993) The origin of articulate crinoids. Palaeontology 36:91–109Google Scholar
  72. Smith AB (1988) Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford, pp 85–97Google Scholar
  73. Smith AB (1994) Systematics and the fossil record: documenting evolutionary patterns. Blackwell, LondonGoogle Scholar
  74. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The genetic data environment, an expandable GUI for multiple sequence analysis. Cabios 10:671–675PubMedGoogle Scholar
  75. Strong EE, Lipscombe D (1999) Character coding and inapplicable data. Cladistics 15:363–371CrossRefGoogle Scholar
  76. Swofford DL (2000) Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland, Mass.Google Scholar
  77. Tholleson M (1999) Phylogenetic analysis of Euthyneura (Gastropoda) by means of the 16S rRNA gene: use of a “fast” gene for “higher-level2 phylogenies. Proc R Soc Lond Ser B 266:75–83CrossRefGoogle Scholar
  78. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedGoogle Scholar
  79. Thorndyke MC, Chen WC, Beesley PW, Patruno M (2001) Molecular approaches to crinoid regeneration. Microsc Res Tech 55:474–485CrossRefPubMedGoogle Scholar
  80. Ubaghs G, Moore RC, Rasmussen HW, Lane NG, Breimer A, Strimple HL, Brower JC, Jeffords RM, Sprinkle J, Peck RE, Macurda JDB, Meyer DL, Roux M, Sieverts-Doreck H, Fay RO, Robison RA (1978) Crinoidea. part T. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Echinodermata 2. Geological Society of America and University of Kansas, Boulder, Colo. and Lawrence, Kan., pp 1–1027Google Scholar
  81. Wada H, Satoh N (1994) Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. J Mol Evol 38:41–49PubMedGoogle Scholar
  82. Wada H, Komatsu M, Satoh N (1996) Mitochondrial rRNA phylogeny of the Asteroidea suggests the primitiveness of Paxillosida. Mol Phylogenet Evol 6:97–106CrossRefPubMedGoogle Scholar
  83. Wilkinson M, Peres-Neto PR, Foster PG, Moncrieff CB (2002) Type 1 error rates of the parsimony permutation tail probability test. Syst Biol 51:524–427CrossRefPubMedGoogle Scholar
  84. Winchell CJ, Sullivan J, Cameron CB, Swalla BJ, Mallatt J (2002) Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 19:762–776PubMedGoogle Scholar
  85. Zarkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Bernard L. Cohen
    • 1
  • Nadia Améziane
    • 2
  • Marc Eleaume
    • 2
  • Bertrand Richer de Forges
    • 3
  1. 1.IBLS Division of Molecular GeneticsUniversity of GlasgowGlasgowUK
  2. 2.Département des Milieux et Peuplements Aquatiques, Museum national d’Histoire naturelleUMR 5178 CNRS BOME “Biologie des Organismes Marins et Ecologie” ParisFrance
  3. 3.Institut de Recherche et Développement NouméaNew Caledonia

Personalised recommendations