Marine Biology

, Volume 143, Issue 4, pp 745–758 | Cite as

Local changes in the composition and community structure of suprabenthic peracarid crustaceans on the bathyal Mediterranean: influence of environmental factors

  • Joan E. CartesEmail author
  • Damià Jaume
  • Teresa Madurell


Deep-water assemblages of suprabenthic peracarids were analyzed in the SW Balearic Islands (Algerian Basin, southwestern Mediterranean) between 249 and 1,622 m depth; the patterns of species composition, possible zonation, and trophic structure found in this area were compared with those exhibited by peracarids in the mainland side of the Catalan Sea slope (northwestern Mediterranean). One hundred and four peracarid species (plus one leptostracan) were identified on the Balearic Islands slope, amphipods being the most diversified taxon (45 species). On the Balearic slope, two distinct depth assemblages were distinguished: one at the upper slope (US), between 249 and 402 m depth and the second at the deep slope, between 543 and 1,620 m depth. A remarkable species substitution occurred at depths between 402 and 638 m. In the Catalan Sea, in addition to the US assemblage occupying depths between 208 and 408 m, a second boundary of faunal change was found around 1,250 m. Suprabenthos biomass increased from 242 to approximately 500 m. Suprabenthos attained the highest biomass values (100 g wet weight/10,000 m2) at intermediate depths between 504 and 1,211 m, as also occurred with the associated zooplankton collected with suprabenthos (peak biomass between 502 m and 898 m). Suprabenthos biomass did not show any significant correlation with any environmental water-column variable. In contrast, zooplankton (especially small fish and decapod crustaceans) showed a significant positive correlation with fluorometry and turbidity at different levels of the water column. The feeding guilds of species showed important differences between the two areas only on the US, with a higher abundance of deposit feeders in the Catalan Sea (20.4%) than in the Balearic Islands (4.2%). The low contribution of deposit feeders in the SW Balearic Islands may ultimately be a consequence of the lack of river discharges in this area.


Zonation Pattern Decapod Crustacean Balearic Island Deposit Feeder Middle Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the assistance provided by all the participants of the research project Deep-Sea Fisheries (reference FAIR-CT95-0655)(0371/II) during cruises. The first author benefitted from a Ramón y Cajal contract (MCYT, call 2001). We extend our thanks especially to Dr. J.C. Sorbe who helped us in the identification of some species.


  1. Abelló P, Valladares F, Castellón A (1988) Analysis of the structure of decapod crustacean assemblages off Catalan Coast (North-West Mediterranean). Mar Biol 98:39–49Google Scholar
  2. Bellan-Santini D (1985) Etude de la faune profonde de Mediterranée: les Amphipodes des trois campagnes Polymede I, Polymede II et Biomede I. Rapp Com Int Mer Mediterr 29:333–334Google Scholar
  3. Bellan-Santini D (1990) Mediterranean deep-sea Amphipoda: composition, structure and affinities of the fauna. Prog Oceanogr 24:275–387Google Scholar
  4. Brandt A (1995) Peracarid fauna (Crustacea, Malacostraca) of the Northeast Water Polynya off Greenland: documenting close benthic-pelagic coupling in the Westwind Trough. Mar Ecol Prog Ser 121:39–51Google Scholar
  5. Brandt A (1997) Abundance, diversity and community patterns of epibenthic- and benthic-boundary layer peracarid crustaceans at 75 degree N off East Greenland. Polar Biol 171:59–174Google Scholar
  6. Carrassón M, Cartes, JE (2002) Trophic relationships in a Mediterranean deep-sea fish community: partition of food resources, dietary overlap and connections with the benthic boundary layer. Mar Ecol Prog Ser 241: 41–55Google Scholar
  7. Cartes JE (1998) Dynamics of the bathyal benthic boundary layer in the north-western Mediterranean: depth and temporal variations and their possible connections within deep-sea trophic webs. Prog Oceanogr 41:111–139CrossRefGoogle Scholar
  8. Cartes JE, Sardà F (1993) Zonation of the deep-sea decapod fauna in the Catalan Sea (western Mediterranean). Mar Ecol Prog Ser 94:27–34Google Scholar
  9. Cartes JE, Sorbe JC (1993) Les communautés suprabenthiques de la Mer Catalane (Méditerranée occidentale): données préliminaires sur la repartition bathymetrique et l'abondance des crustacés péracarides. Crustaceana 64:155–171Google Scholar
  10. Cartes JE, Sorbe JC (1997) Bathyal Cumaceans of the Catalan Sea (north-western Mediterranean): faunistic composition, diversity and near bottom distribution along the slope (between 389–1859 m). J Nat Hist 31:1041–1054Google Scholar
  11. Cartes JE, Sorbe JC (1998) Aspects of the population structure and feeding ecology of the deep-water mysid Boreomysis arctica, a dominant species in western Mediterranean slope assemblages. J Plankton Res 20:2273–2290Google Scholar
  12. Cartes JE, Sorbe JC, Sarda F (1994) Spatial distribution and swimming activity of deep-sea decapods and euphausiids near the bottom in the Northwestern Mediterranean. J Exp Mar Biol Ecol 179:131–144Google Scholar
  13. Cartes JE, Elizalde M, Sorbe JC (2001) Contrasting life-histories, secondary production, and trophic structure of the bathyal suprabenthos from the Bay of Biscay (NE Atlantic) and the Catalan Sea (NW Mediterranean). Deep Sea Res I 48:2209–2232CrossRefGoogle Scholar
  14. Cartes JE, Grémare A, Maynou F, Villora-Moreno S, Dinet A (2002) Benthic boundary layer response to fluxes of labile particulate organic matter in the bathyal environment of the Catalan Sea (northwestern Mediterranean). Prog Oceanogr 53:29–56CrossRefGoogle Scholar
  15. Cattrijsse A, Makwaia ES, Dankwa HR, Hamerlynck O, Hemminga MA (1994) Nekton communities of an intertidal creek of a European estuarine brackish marsh. Mar Ecol Prog Ser 109:195–208Google Scholar
  16. Dauvin JC, Sorbe JC (1995) Suprabenthic amphipods from the southern margin of the Cap Ferret Canyon (Bay of Biscay, north-eastern Atlantic Ocean): abundance and bathymetric distribution. Pol Arch Hydrobiol 42:441–460Google Scholar
  17. Dickinson JJ (1978) Faunal comparison of the Gammarid Amphipoda (Crustacea) in two bathyal basins of the California continental borderland. Mar Biol 48:367–372Google Scholar
  18. Dickinson JJ, Carey Jr AG (1978) Distribution of gammarid Amphipoda (Crustacea) on Cascadia Abyssal Plain (Oregon). Deep-Sea Res 25:97–106Google Scholar
  19. Diviacco G, Ruffo S (1989) Family Lysianassidae, the Amphipoda of the Mediterranean. Mem Inst Oceanogr Monaco 13:469–535Google Scholar
  20. Elizalde M, Dauvin JC, Sorbe JC (1991) Les Mysidacés suprabenthiques de la marge sud du canyon du Cap Ferret (golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann Inst Oceanogr Paris. 67:129–144Google Scholar
  21. Emelyanov EM (1972) Principal types of recent bottom sediments in the Mediterranean Sea: their mineralogy and geochemistry. In: Stanley DJ (ed). The Mediterranean Sea: a natural sedimentation laboratory. Dowden Hutchinson and Ross, Stroudsburg, pp 355–386Google Scholar
  22. Etcheber H, Relexans JC, Beliard M, Weber O, Buscail R, Heussner S (1999) Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep Sea Res II 46:2249–2288Google Scholar
  23. Gage JD (1986) The benthic fauna of the Rockall Trough: regional distribution and bathymetric zonation. Proc R Soc Edinb B 88:159–174Google Scholar
  24. Gage JD, Tyler PA (1991) Deep sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, CambridgeGoogle Scholar
  25. Gage JD, Lamont PA, Kroeger K, Paterson GL, Gonzalez Vecino JL (2000) Patterns in deep-sea macrobenthos at the continental margin: standing crop, diversity and faunal change on the continental slope off Scotland. Hydrobiologia440:261–271Google Scholar
  26. García-Ladona E, Castellón A, Font J, Tintoré J (1996) The Balearic current and volume transports in the Balearic basin. Oceanol Acta 19:489–497Google Scholar
  27. Haedrich RL, Merrett NR (1990) Little evidence for faunal zonation or communities in deep sea demersal fish faunas. Prog Oceanogr 24:239–250Google Scholar
  28. Haedrich RL, Rowe GT, Polloni PT (1980) The megabenthic fauna in the deep sea south of New England, USA. Mar Biol 57:165–179Google Scholar
  29. Hecker B (1990) Photographic evidence for the rapid flux of particles to the sea floor and their transport down the continental slope. Deep-Sea Res 37:1773–1782Google Scholar
  30. Ledoyer M (1987) Les Cumacés Mediteranéens profonds (Crustacea) des campagnes Bioméde I et II et Balgim. Synthèse de la distribution bathyale du groupe en Méditerranée occidentale. Mésogée 57:49–70Google Scholar
  31. Maynou F, Cartes JE (2000) Community structure of bathyal decapod crustacean assemblages off the Balearic Islands (South-western Mediterranean) : seasonal changes and regional patterns in zonation. J Mar Biol Assoc UK 50:789–798CrossRefGoogle Scholar
  32. Millot C (1987) Circulation in the western Mediterranean. Oceanol Acta 10:143–149Google Scholar
  33. Moranta J, Stefanescu C, Massuti E, Morales-Nin B, Lloris D (1998) Fish community structure and depth-related trends on the continental slopes of the Balearic Islands (Algerian basin, western Mediterranean). Mar Ecol Prog Ser 171:247–259Google Scholar
  34. Morin A, Bourassa N (1992) Modèles empiriques de la production annuelle et du raport P/B d'invertebrés benthiques d'eau courante. Can J Fish Aquat Sci 49:532–539Google Scholar
  35. Polunin NVC, Morales-Nin B, Herod W, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by carbon and nitrogen stable-isotope data. Mar Ecol Prog Ser 220:13–23Google Scholar
  36. Reyss D (1971) Les canyons sous-marines de la mer Catalane. Le rech du Cap et le rech Lacaze-Duthiers. IV. Etude synécologique des peuplements de macrofaune benthique. Vie Milieu 22:529–613Google Scholar
  37. Rex MA (1977) Zonation in deep-sea gastropods: the importance of biological interactions to rates of zonation. Eur Symp Mar Biol 11:521–530Google Scholar
  38. Rowe GT, Menzies RJ (1969) Zonation of large benthic invertebrates in the deep-sea off the Carolinas. Deep-Sea Res 16:531–537Google Scholar
  39. Rowe GT, Polloni PT, Haedrich RL (1982). The deep-sea macrobenthos on the continental margin of the northwest Atlantic Ocean. Deep-Sea Res 29:257–278Google Scholar
  40. Sainte-Marie B (1992) Foraging of scavenging deep-sea lysianassoid amphipods. In: Rowe GT, Pariente V (eds) Trophic food chains and the global carbon cycle. Kluwer, Dordrecht, pp 105–124Google Scholar
  41. Smith CR, Hamilton SC (1983) Epibenthic megafauna of a bathyal basin off southern California: patterns of abundance, biomass, and dispersion. Deep-Sea Res 30:907–928Google Scholar
  42. Smith CR, Levin LA, Mullineaux LS (1998) Deep-sea biodiversity: a tribute to Robert R. Hessler. Deep-Sea Res II 45:1–11Google Scholar
  43. Stefanescu C, Lloris D, Rucabado J (1993) Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Deep-Sea Res 40:695–707Google Scholar
  44. Tattersall WM, Tattersall OS (1951) The British Mysidacea. Ray Society, LondonGoogle Scholar
  45. Thurston MH, Bett BJ (1993) Eyelessness in marine gammaridean Amphipoda (Crustacea): geographical, bathymetric and taxonomic considerations. J Nat Hist 27:861–881Google Scholar
  46. Watts MC, Etter RJ, Rex MA (1992) Effects of spatial and temporal scale on the relationship of surface pigment biomass to community structure in the deep-sea benthos. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycling. Kluwer, Dordrecht, pp 245–254Google Scholar
  47. Wenner EL, Boesch DF (1979) Distribution patterns of epibenthic decapod Crustacea along the shelf-slope coenocline, middle Atlantic Bight, USA. Bull Biol Soc Wash 3:106–133Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Joan E. Cartes
    • 1
    Email author
  • Damià Jaume
    • 2
  • Teresa Madurell
    • 3
  1. 1.Institut de Ciències del MarCSIC BarcelonaSpain
  2. 2.Institut Mediterrani d´Estudis Avançants IMEDEACSIC/UIB EsporlesSpain
  3. 3.National Centre for Marine ResearchAthensGreece

Personalised recommendations