Marine Biology

, Volume 142, Issue 5, pp 855–865 | Cite as

Feeding ecology of the three juvenile phases of the spiny lobster Panulirus argus in a tropical reef lagoon

  • P. Briones-Fourzán
  • V. Castañeda-Fernández de Lara
  • E. Lozano-Álvarez
  • J. Estrada-Olivo
Article

Abstract

The three juvenile phases of the spiny lobster Panulirus argus (algal phase: 5–15 mm carapace length, CL; postalgal phase: 15–45 mm CL, and subadults: 45–80 mm CL) occur in the reef lagoon at Puerto Morelos, Mexico. The algal phase abounds in this lagoon, which is covered by extensive seagrass–algal meadows, but the density of postalgal and subadult juveniles is low, owing to the scarcity of crevice-type shelters suitable for these phases. The feeding ecology of the three juvenile phases was investigated to examine whether spatial or temporal differences in food intake, diet composition, or nutritional condition occurred among phases and could partially account for the low abundance of the larger juveniles. Juveniles were collected by divers at night, from January to November 1995, throughout the mid-lagoon and back-reef zones. Percent stomach fullness, relative weight of the digestive gland (RWDG, an index of nutritional condition), percent frequency of occurrence and percent volume of food categories in the diet were compared between sexes, juvenile phases, molt stages (postmolt, intermolt, premolt), seasons, and sampling zones (mid-lagoon and back-reef zones). Significant differences in stomach fullness occurred only among molt stages, mainly because postmolt individuals had emptier stomachs. The main food categories in all juvenile phases were crustaceans (mostly hermit crabs and brachyurans) and gastropods, but the food spectrum was wide, including many other animal taxa as well as plant matter. In June 1995, the epibenthic macrofauna was sampled in five sites in the lagoon that differed in their amount of vegetation. The most abundant taxa in all sites were decapods and gastropods, but density and diversity measures showed that the distribution of these potential prey taxa for juvenile P. argus was rather patchy. Diet overlap in juvenile lobsters was high between sexes, juvenile phases, sampling zones, seasons, and molting stages, indicating that all juveniles fed on the same general food categories throughout time. The only factor that affected the RWDG was the juvenile phase. RWDG was significantly lower in subadults than in algal and postalgal phases, suggesting a poorer nutritional condition in the largest juveniles. This may be related to the scarcity of suitable shelters for large juveniles throughout the lagoon, which may preclude subadults from exploiting food resources in areas of the lagoon where shelter is limited.

Keywords

Digestive Gland Hermit Crab Food Category Sampling Zone Poor Nutritional Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the help provided by F. Negrete-Soto in field work and data processing, and by C. Barradas-Ortiz, G. Reyes-Zavala, E. Cadena-Barrientos, and P. Rangel-Zarza in field and/or laboratory activities. V. Monroy-Velázquez, E. Cadena-Barrientos, F. Solís, and F. Escobar de la Llata helped to identify the epifauna. F. Ruiz-Rentería kindly provided the water temperature data. Comments by three anonymous reviewers greatly improved the manuscript. This project (no. 1171-N) was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT-México), including scholarships to V.C.F.de L. and J.E.O. A scientific fishing permit (no. 270295-310-03) to collect juvenile lobsters was issued by the Secretary of the Environment, Natural Resources, and Fisheries (SEMARNAP-México).

References

  1. Andrée WS (1981) Locomotory activity patterns and food items of benthic postlarval spiny lobsters Panulirus argus. MSc thesis, Florida State University, MiamiGoogle Scholar
  2. Barkai A, Branch GM (1988) Energy requirement for a dense population of rock lobsters, Jasus lalandii: novel importance of unorthodox food sources. Mar Ecol Prog Ser 50:83–96Google Scholar
  3. Bell JD, Westoby M (1986) Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. J Exp Mar Biol Ecol 104:249–274Google Scholar
  4. Berry PF (1971) The biology of the spiny lobster Panulirus homarus (Linnaeus) off the east coast of southern Africa. Invest Rep Oceanogr Res Inst Durban 28:1–75Google Scholar
  5. Briones-Fourzán P (1994) Variability in postlarval recruitment of the spiny lobster Panulirus argus (Latreille, 1804) to the Mexican Caribbean coast. Crustaceana 66:326–340Google Scholar
  6. Briones-Fourzán P, Lozano-Álvarez E (2001a) The importance of Lobophora variegata (Phaeophyta: Dictyotales) as a habitat for small juveniles of Panulirus argus (Decapoda: Palinuridae) in a tropical reef lagoon. Bull Mar Sci 68:207–219Google Scholar
  7. Briones-Fourzán P, Lozano-Álvarez E (2001b) Effects of artificial shelters (casitas) on the abundance and biomass of juvenile spiny lobsters, Panulirus argus, in a habitat-limited tropical reef lagoon. Mar Ecol Prog Ser 221:221–232Google Scholar
  8. Butler MJ IV, Herrnkind WF (1997) A test of recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can J Fish Aquat Sci 54:452–463CrossRefGoogle Scholar
  9. Butler MJ IV, Herrnkind WF (2000) Puerulus and juvenile ecology. In: Phillips BF, Kittaka J (eds) Spiny lobsters: fisheries and culture, 2nd edn. Fishing News Books, Oxford, pp 276–301Google Scholar
  10. Cartes JE, Sardà F (1989) Feeding ecology of the deep-water aristeid crustacean Aristeus antennatus. Mar Ecol Prog Ser 54:229–238Google Scholar
  11. Castañeda V (1998) Alimentación natural de los juveniles de langosta Panulirus argus (Latreille, 1804). Tesis profesional, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  12. Colinas-Sánchez F, Briones-Fourzán P (1990) Alimentación de las langostas Panulirus argus y P. guttatus (Latreille, 1804) en el Caribe mexicano. An Inst Cienc Mar Limnol Univ Nac Auton Mex 17:89–109Google Scholar
  13. Conan GY (1985) Periodicity and phasing of molting. In: Wenner AM (ed) Crustacean issues. 3. Factors in adult growth. Balkema, Rotterdam, pp 73–99Google Scholar
  14. Cox C, Hunt JH, Lyons WG, Davis GE (1997) Nocturnal foraging of the Caribbean spiny lobster (Panulirus argus) on offshore reefs of Florida, USA. Mar Freshw Res 48:671–679Google Scholar
  15. Dall W (1974) Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. J Exp Mar Biol Ecol 16:167–180Google Scholar
  16. Dall W (1975) Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). II. Gastric fluid constituents. J Exp Mar Biol Ecol 18:1–18Google Scholar
  17. de Lestang S, Platell ME, Potter IC (2000) Dietary composition of the blue swimmer crab Portunus pelagicus L. Does it vary with body size and shell state and between estuaries? J Exp Mar Biol Ecol 246:241–257PubMedGoogle Scholar
  18. Drazen JC, Buckley TW, Hoff GR (2001) The feeding habits of slope dwelling macrourid fishes in the eastern North Pacific. Deep-Sea Res I 48:909–935CrossRefGoogle Scholar
  19. Edgar GJ (1990) Predator–prey interactions in seagrass beds. I. The influence of macrofaunal abundance and size-structure on the diet and growth of the western rock lobster Panulirus cygnus George. J Exp Mar Biol Ecol 139:1–22Google Scholar
  20. Estrada-Olivo JJ (1999) Riqueza específica y abundancia de la macrofauna béntica asociada a pastizales marinos en la laguna arrecifal de Puerto Morelos, Quintana Roo, México. Tesis profesional, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  21. Forcucci D, Butler MJ IV, Hunt JH (1994) Population dynamics of juvenile Caribbean spiny lobster, Panulirus argus, in Florida Bay, Florida. Bull Mar Sci 54:805–818Google Scholar
  22. Fritz ES (1974) Total diet comparison in fishes by Spearman rank correlation coefficients. Copeia 1:210–214Google Scholar
  23. Gray JS (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. J Exp Mar Biol Ecol 250:23–49CrossRefPubMedGoogle Scholar
  24. Hagerman L (1983) Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol 77:11–17Google Scholar
  25. Heck KL (1977) Comparative species richness, composition, and abundance of invertebrates in Caribbean seagrass (Thalassia testudinum) meadows (Panama). Mar Biol 41:335–348Google Scholar
  26. Heck KL, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142Google Scholar
  27. Herrera A, Ibarzábal D, Foyo J, Espinosa J (1991) Alimentación natural de la langosta Panulirus argus en la región de Los Indios (plataforma SW de Cuba) y su relación con el bentos. Rev Investig Mar 12:172–182Google Scholar
  28. Herrnkind WF, van der Walker JA, Barr L (1975) Population dynamics, ecology and behavior of spiny lobsters, Panulirus argus, of St John, U.S.V.I. IV. Habitation, patterns of movement and general behavior. Nat Hist Mus Los Angel Cty Sci Bull 20:31–45Google Scholar
  29. Holthuis LB (1991) Marine lobsters of the world: an annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis no. 125, vol 13, FAO, RomeGoogle Scholar
  30. Horn HS (1966) Measurement of "overlap" in comparative ecological studies. Am Nat 100:419–424CrossRefGoogle Scholar
  31. Hyslop EJ (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429Google Scholar
  32. Jernakoff P, Phillips BF, Fitzpatrick JJ (1993) The diet of postpuerulus western rock lobster Panulirus cygnus George at Seven Mile Beach, Western Australia. Aust J Mar Freshw Res 44:649–655Google Scholar
  33. Joll LM, Phillips BF (1984) Natural diet and growth of juvenile western rock lobster Panulirus cygnus. J Exp Mar Biol Ecol 75:145–169Google Scholar
  34. Juanes F (1992) Why do decapod crustaceans prefer small-sized molluscan prey? Mar Ecol Prog Ser 87:239–249Google Scholar
  35. Lalana RR, Ortiz M (1991) Contenido estomacal de puerulos y postpuerulos de la langosta Panulirus argus en el Archipiélago de los Canarreos, Cuba. Rev Investig Mar 12:107–116Google Scholar
  36. Lalana RR, Díaz E, Brito R, Kodjo D, Cruz R (1987) Ecología de la langosta (Panulirus argus) al SE de la Isla de la Juventud. III. Estudio cualitativo y cuantitativo del bentos. Rev Investig Mar 8:31–43Google Scholar
  37. Lewis FG, Stoner AW (1983) Distribution of macrofauna within seagrass beds: an explanation for patterns of abundance. Bull Mar Sci 33:296–304Google Scholar
  38. Lindberg RG (1955) Growth, population dynamics and field behavior in the spiny lobster Panulirus interruptus (Randall). Publ Zool Univ Calif 59:157–248Google Scholar
  39. Lozano-Álvarez E, Aramoni-Serrano G (1996) Alimentación y estado nutricional de las langostas Panulirus inflatus y Panulirus gracilis (Decapoda: Palinuridae) en Guerrero, México. Rev Biol Trop 44:453–461Google Scholar
  40. Lozano-Álvarez E, Briones-Fourzán P, Phillips BF (1991) Fisheries characteristics, growth, and movements of the spiny lobster Panulirus argus in Bahía de la Ascensión, México. Fish Bull (Wash DC) 89:79–89Google Scholar
  41. Lyle WG, MacDonald CD (1983) Molt stage determination in the Hawaiian spiny lobster, Panulirus marginatus. J Crustac Biol 3:208–216Google Scholar
  42. Maller RA, de Boer ES, Joll LM, Anderson DA, Hinde JP (1983) Determination of the maximum foregut volume of western rock lobster (Panulirus cygnus) from field data. Biometrics 39:543–551Google Scholar
  43. Mantelatto FLM, Christofoletti RA (2001) Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (São Paulo, Brazil): influence of season, sex, size and molt stage. Mar Biol 138:585–594CrossRefGoogle Scholar
  44. Martinelli TL (1993) Nutritional indices for the Hawaiian spiny lobster, Panulirus marginatus. MSc thesis, University of Hawaii, ManoaGoogle Scholar
  45. Marx J, Herrnkind WF (1985) Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull Mar Sci 36:423–431Google Scholar
  46. Merino M, Otero L (1991) Atlas ambiental costero: Puerto Morelos, Quintana Roo. Centro de Investigaciones de Quintana Roo, ChetumalGoogle Scholar
  47. Monroy-Velázquez LV (2000) Variaciones en la composición y abundancia de la fauna de decápodos asociados a pastizales marinos en el Caribe mexicano. Tesis de Maestría, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  48. Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131Google Scholar
  49. Musgrove RJB (2001) Interactions between haemolymph chemistry and condition in the southern rock lobster, Jasus edwardsii. Mar Biol 139:891–899CrossRefGoogle Scholar
  50. Newman GG, Pollock DE (1974) Growth of the rock lobster Jasus lalandii and its relationship to benthos. Mar Biol 24:339–346Google Scholar
  51. Oh CW, Hartnoll RG, Nash RDM (2001) Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Mar Ecol Prog Ser 214:211–223Google Scholar
  52. Oliver MD, MacDiarmid AB (2001) Blood refractive index and ratio of weight to carapace length as indices of nutritional condition in juvenile rock lobsters (Jasus edwardsii). Mar Freshw Res 52:1395–1400CrossRefGoogle Scholar
  53. Padilla-Ramos S, Briones-Fourzán P (1997) Biological characteristics of the spiny lobsters (Panulirus spp.) from the commercial catch in Puerto Morelos, Quintana Roo, México. Cienc Mar 23:175–193Google Scholar
  54. Robertson DN, Butler MJ IV, Dobbs FC (2000) An evaluation of lipid- and morphometric-based indices of nutritional condition for early benthic stage spiny lobsters, Panulirus argus. Mar Freshw Behav Physiol 33:161–171Google Scholar
  55. Ruiz-Rentería F, van Tussenbroek BI, Jordán-Dahlgren E (1998) Puerto Morelos, Quintana Roo, México. In: Kjerve B (ed) CARICOMP–Caribbean coral reef, seagrass, and mangrove sites. UNESCO, Paris, pp 56–66Google Scholar
  56. Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404Google Scholar
  57. Smith KN, Herrnkind WF (1992) Predation on early juvenile spiny lobsters Panulirus argus (Latreille): influence of size and shelter. J Exp Mar Biol Ecol 157:3–18Google Scholar
  58. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, N.J.Google Scholar
  59. van Tussenbroek BI (1995) Thalassia testudinum leaf dynamics in a Mexican Caribbean coral reef lagoon. Mar Biol 122:33–40Google Scholar
  60. Williams MJ (1981) Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). J Exp Mar Biol Ecol 52:103–113Google Scholar
  61. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • P. Briones-Fourzán
    • 1
  • V. Castañeda-Fernández de Lara
    • 1
  • E. Lozano-Álvarez
    • 1
  • J. Estrada-Olivo
    • 1
  1. 1.Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto MorelosUniversidad Nacional Autónoma de MéxicoCancúnMexico

Personalised recommendations