Advertisement

Numerical modelling of timber and timber joints: computational aspects

  • 101 Accesses

Abstract

Timber joints with their simultaneous ductile and brittle failure modes still pose a major challenge when it comes to modelling. Wood is heterogeneous and highly anisotropic. It shows ductile behaviour in compression and brittle behaviour in tension and shear. A 3D constitutive model for wood based on continuum damage mechanics was developed and implemented via a subroutine into a standard FE framework. Embedment and joint tests using three different wood species (spruce, beech and azobé) were carried out, and the results were compared with modelling outcomes. The failure modes could be identified, and the general shape of the load–displacement curves agreed with the experimental outcomes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Abbreviations

E L :

Modulus of elasticity in longitudinal direction (parallel to the fibre direction)

E R :

Modulus of elasticity in radial direction (perpendicular to the fibre direction)

E T :

Modulus of elasticity in tangential direction (perpendicular to the fibre direction)

G LR :

Shear modulus in LR-plane

G LT :

Shear modulus in LT-plane

G RT :

Shear modulus in RT-plane

f t,0 :

Tensile strength parallel to the fibre direction

f c,0 :

Compressive strength parallel to the fibre direction

f t,90 :

Tensile strength perpendicular to the fibre direction

f c,90 :

Compressive strength perpendicular to the fibre direction

f v :

Shear strength

f roll :

Rolling shear strength

G f,0 :

Fracture energy for tension parallel to the fibre direction

G f,90 :

Fracture energy for tension perpendicular to the fibre direction

G f,v :

Fracture energy for shear

G f,roll :

Fracture energy for rolling shear

d t,0 :

Damage in tension parallel to the fibre direction

d c,0 :

Damage in compression parallel to the fibre direction

d t,90R :

Damage in tension perpendicular to the fibre direction (LT-plane)

d c,90R :

Damage in compression perpendicular to the fibre direction (radial direction)

d t,90T :

Damage in tension perpendicular to the fibre direction (LR-plane)

d c,90T :

Damage in compression perpendicular to the fibre direction (tangential direction)

d vR :

Damage in longitudinal shear (LT-plane)

d vT :

Damage in longitudinal shear (LR-plane)

d roll :

Damage in rolling shear (RT-plane)

σ ij :

Vector of stresses

ε ij :

Vector of strains

D ijkl :

Modified stiffness matrix (including damage)

ν ij :

Poisson ratios

η :

Viscosity parameter

CDM:

Continuum damage mechanics

hss:

High-strength steel

vhss:

Very high-strength steel

C3D8:

3D linear hexahedral elements with 8 nodes

C3D20:

3D quadratic hexahedral elements with 20 nodes

C3D20R:

3D quadratic hexahedral elements with 20 nodes and reduced integration

SDV11:

State variable, showing the damage variable dc,0 in compression parallel to the fibre direction

SDV14:

State variable, showing the damage variable dt,90 in tension perpendicular to the fibre direction

SDV16:

State variable, showing the damage variable dvR in longitudinal shear

COV:

Coefficient of variation

References

  1. Ballerini M, Rizzi M (2005) A numerical investigation on the splitting strength of beams loaded perpendicular-to-grain by multiple dowel-type connections. Paper 38-7-1. CIB-W18 Meeting 38, Karlsruhe, Germany

  2. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Matériaux Constr 16(3):155–177. https://doi.org/10.1007/BF02486267

  3. Blaß HJ, Bejtka I (2008) Numerische Berechnung der Tragfähigkeit und der Steifigkeit von querzugverstärkten Verbindungen mit stiftförmigen Verbindungsmitteln (Numerical calculation of load-carrying capacity and stiffness of reinforced joints with dowel-type fasteners). Karlsruher Berichte zum Ingenieurholzbau, vol 10. Karlsruhe University of Technology, Germany (in German)

  4. Bocquet JF (1997) Modélisation des deformations locales du bois dans les assemblages brochés et boulonnés (Modelling of local deformations of the timber in dowelled and bolted joints). Dissertation, University Blaise Pascal Clermont-Ferrand (in French)

  5. Campilho RDSG, de Moura MFSF, Barreto AMJP, Morais JJL, Domingues JJMS (2009) Fracture behaviour of damaged wood beams repaired with an adhesively-bonded composite patch. Compos A 40(6-7):852–859

  6. Cofer WF, Du Y, Hermanson JC (1999) Development of a simple three dimensional constitutive model for the analysis of wood, vol 231. American Society of Mechanical Engineers, Applied Mechanics Division (AMD), Mechanics of Cellulosic Materials, New York, pp 107–124

  7. Dias AMPG, Van de Kuilen JWG, Cruz HMP, Lopes SMR (2010) Numerical modelling of the load-deformation behavior of doweled softwood and hardwood joints. Wood Fiber Sci 42(4):480–489

  8. Dorn M (2012) Investigations on the serviceability limit state of dowel-type timber connections. Dissertation, Technische Universität Wien

  9. Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz; experimentelle Bestimmung der biaxialen Festigkeitseigenschaften (Mechanical behaviour of spruce; experimental determination of biaxial strength properties). Springer, Vienna. ISBN: 978-3-211-83763-4. https://doi.org/10.1007/978-3-7091-6111-1(in German)

  10. EN 26891 (1991) Timber structures—joints made with mechanical fasteners—general principles for the determination of strength and deformation characteristics (ISO 6891). Comité Européen de Normalisation (CEN), Brussels

  11. EN 338 (2009) Structural timber—strength classes. Comité Européen de Normalisation (CEN), Brussels

  12. Federal Highway Administration (2007) Manual for LS-Dyna wood material model 143. Publication No. FHWA-HRT-04-097. U.S. Department of Transportation

  13. Fleischmann M (2005) Numerische Berechnung von Holzkonstruktionen unter Verwendung eines realitätsnahen orthotropen elasto-plastischen Werkstoffmodells (Numerical calculations of timber structures using a realistic orthotropic elasto-plastic material model). Dissertation, Technical University, Vienna (in German)

  14. Franke S (2008) Zur Beschreibung des Tragverhaltens von Holz unter Verwendung eines photogrammetrischen Messsystems (Description of load-carrying behaviour of timber using a photogrammetric measuring system). Dissertation, Bauhaus University Weimar (in German)

  15. Gharib M, Hassanieh A, Valipour H, Bradford MA (2017) Three-dimensional constitutive modelling of arbitrarily orientated timber based on continuum damage mechanics. Finite Elem Anal Des 135:79–90. https://doi.org/10.1016/j.finel.2017.07.008

  16. Grosse M (2005) Zur numerischen Simulation des physikalisch nichtlinearen Kurzzeittragverhaltens von Nadelholz am Beispiel von Holz-Beton-Verbundkonstruktionen (Numerical simulation of physical non-linear short-term behaviour of softwood using the example of timber-concrete composite structures). Dissertation, Bauhaus University Weimar (in German)

  17. Hambli R (2013) A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Med Biol Eng Comput 51(1–2):219–231. https://doi.org/10.1007/s11517-012-0986-5

  18. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech Trans ASME 47(2):329–334. https://doi.org/10.1115/1.3153664

  19. Hemmer K (1985) Versagensarten des Holzes der Weißtanne (Abies alba) unter mehrachsiger Beanspruchung (Failure modes of fir (Abies alba) subjected to multiaxial loading). Dissertation, University of Technology Karlsruhe (in German)

  20. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A Solids 24(6):1030–1053. https://doi.org/10.1016/j.euromechsol.2005.05.006

  21. Jockwer R (2014) Structural behaviour of glued laminated timber beams with unreinforced and reinforced notches. Dissertation, ETH Zürich

  22. Juhasz TJ (2003) Ein neues physikalisch basiertes Versagenskriterium für schwach 3D-verstärkte Faserverbundlaminate (A new physical failure criterion for slightly 3D-reinforced composite materials). Dissertation, Technical University Braunschweig (in German)

  23. Keenan FJ (1973) Shear strength of glued-laminated timber beams. Dissertation, University of Toronto

  24. Khelifa M, Khennane A, El Ganaoui M, Celzard A (2016) Numerical damage prediction in dowel connections of wooden structures. Mater Struct 49:1829–1840. https://doi.org/10.1617/s11527-015-0615-5

  25. Khennane A, Khelifa M, Bleron L, Viguier J (2014) Numerical modelling of ductile damage evolution in tensile and bending tests of timber structures. Mech Mater 68:228–236. https://doi.org/10.1016/j.mechmat.2013.09.004

  26. Lee H (2015) Damage modelling for composite structures. Dissertation, University of Manchester

  27. Li M, Füssl J, Lukacevic M, Eberhardsteiner J, Martin CM (2018) Strength predictions of clear wood at multiple scales using numerical limit analysis approaches. Comput Struct 196:200–216. https://doi.org/10.1016/j.compstruc.2017.11.005

  28. Lopes CS (2009) Damage and failure of non-conventional composite laminates. Dissertation, Delft University of Technology

  29. Maimí P (2006) Modelización constitutiva y computacional del daño y la fractura de materiales compuestos (Constitutive numerical modelling of damage and fracture of composite materials). Dissertation, University of Girona (in Spanish)

  30. Maimí P, Mayugo JA, Camanho PP (2008) A three-dimensional damage model for transversely isotropic composite laminates. J Compos Mater 42(25):2717–2745. https://doi.org/10.1177/0021998308094965

  31. Maquer G, Schwiedrzik J, Zysset PK (2014) Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression. Comput Methods Biomech Biomed Eng 17(12):1311–1322. https://doi.org/10.1080/10255842.2012.744400

  32. Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20(2):125–152. https://doi.org/10.1016/0167-6636(94)00053-0

  33. Moses DM, Prion HGL (2004) Stress and failure analysis of wood composites: a new model. Compos B Eng 35(3):251–261. https://doi.org/10.1016/j.compositesb.2003.10.002

  34. Nagy E, Landis EN, Davids WG (2010) Acoustic emission measurements and lattice simulations of microfracture events in spruce. Holzforschung 64(4):455–461. https://doi.org/10.1515/hf.2010.088

  35. Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P (2005) Failure modes and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Technical Report NASA/TM-2005-213530. NASA Langley Research Center, Hampton, VA, USA

  36. Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein E, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848. https://doi.org/10.1016/S8756-3282(02)00736-6

  37. Resch E, Kaliske M (2010) Three-dimensional numerical analyses of load-bearing behavior and failure of multiple double-shear dowel-type connections in timber engineering. Comput Struct 88(3–4):165–177. https://doi.org/10.1016/j.compstruc.2009.09.002

  38. Riks E (1972) The application of Newton’s method to the problem of elastic stability. J Appl Mech 39:1060–1066

  39. Ruffoni D, van Lenthe GH (2017) 3.10 Finite element analysis in bone research: a computational method relating structure to mechanical function. In: Ducheyne P (ed) Comprehensive Biomaterials II, vol 3. Elsevier, Oxford, pp 169–196

  40. Saavedra Flores EI, Saavedra K, Hinojosa J, Chandra Y, Das R (2016) Multi-scale modelling of rolling shear failure in cross-laminated timber structures by homogenisation and cohesive zone models. Int J Solids Struct 81:219–232. https://doi.org/10.1016/j.ijsolstr.2015.11.027

  41. Sandhaas C (2011) 3D material model for wood, based on continuum damage mechanics. Stevinrapport 6-11-4, Stevin II Laboratory. Delft University of Technology, The Netherlands

  42. Sandhaas C (2012) Mechanical behaviour of timber joints with slotted-in steel plates. Dissertation, Delft University of Technology

  43. Sandhaas C, Ravenshorst G, Blaß HJ, Van de Kuilen JWG (2013) Embedment tests parallel-to-grain and ductility aspects using various wood species. Eur J Wood Prod 71(5):599–608. https://doi.org/10.1007/s00107-013-0718-z

  44. Schlangen E, Qian Z (2009) 3D modeling of fracture in cement-based materials. J Multiscale Model 1(2):245–261. https://doi.org/10.1142/S1756973709000116

  45. Schmid M (2002) Anwendung der Bruchmechanik auf Verbindungen mit Holz (Application of fracture mechanics to timber joints). Dissertation, University of Technology Karlsruhe (in German)

  46. Schweigler M, Bader TK, Hochreiner G, Unger G, Eberhardsteiner J (2016) Load-to-grain angle dependence of the embedment behavior of dowel-type fasteners in laminated veneer lumber. Constr Build Mater 126:1020–1033. https://doi.org/10.1016/j.conbuildmat.2016.09.051

  47. Sirumbal-Zapata LF, Málaga-Chuquitaype C, Elghazouli AY (2018) A three-dimensional plasticity-damage constitutive model for timber under cyclic loads. Comput Struct 195:47–63. https://doi.org/10.1016/j.compstruc.2017.09.010

  48. Spengler R (1982) Festigkeitsverhalten von Brettschichtholz unter zweiachsiger Beanspruchung; Teil 1: Ermittlung des Festigkeitsverhaltens von Brettelementen aus Fichte durch Versuche (Load-carrying behaviour of glued laminated timber subjected to biaxial loading; part 1: experimental determination of load-carrying behaviour of spruce laminations). SFB96, Volume 62, reports on reliability theory of structures. Technical University Munich (in German)

  49. Toussaint P (2009) Application et modélisation du principe de la précontrainte sur des assemblages de structure bois. (Application and modelling of the principle of pre-stressing on timber joints). Dissertation, University Henri Poincaré ENSTIB Nancy (in French)

  50. Valipour H, Khorsandnia N, Crews K, Foster S (2014) A simple strategy for constitutive modelling of timber. Constr Build Mater 53:138–148. https://doi.org/10.1016/j.conbuildmat.2013.11.100

  51. van de Kuilen JWG, Gard W, Ravenshorst G, Antonelli V, Kovryga A (2017) Shear strength values for soft- and hardwoods. Paper 50-6-1. INTER Meeting 50, Kyoto, Japan, pp 49–64

  52. Xu BH, Taazount M, Bouchaïr A, Racher P (2009) Numerical 3D finite element modelling and experimental tests for dowel-type timber joints. Constr Build Mater 23(9):3043–3052. https://doi.org/10.1016/j.conbuildmat.2009.04.006

Download references

Author information

Correspondence to Carmen Sandhaas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sandhaas, C., Sarnaghi, A.K. & van de Kuilen, J. Numerical modelling of timber and timber joints: computational aspects. Wood Sci Technol 54, 31–61 (2020) doi:10.1007/s00226-019-01142-8

Download citation