Advertisement

Comparison of pyrolyzed lignin before and after milled wood lignin purification of Norway spruce with increasing steam explosion

  • Ida AarumEmail author
  • Anders Solli
  • Hördur Gunnarsson
  • Dayanand Kalyani
  • Hanne Devle
  • Dag Ekeberg
  • Yngve Stenstrøm
Original
  • 36 Downloads

Abstract

Increasing energy and chemical needs have to be covered by renewable resources, such as biomass, in the near future. Steam explosion is a green pretreatment for utilizing biomass, but it produces a by-product, pseudo-lignin. By comparing milled wood lignin purified and unpurified samples after steam explosion with pyrolysis–GC–MS, the components of pseudo-lignin should be evident. 2D NMR HSQC was also conducted on the purified samples, in addition to compositional analysis after steam explosion. After steam explosion, there is about 6 wt% of pseudo-lignin, and the pyrolysis shows an increase in diol benzenes and furan components in the unpurified samples, which is associated with pseudo-lignin.

Notes

Acknowledgements

This research was supported by the Research Council of Norway Project No. 243950 (Biocatalytic utilization of lignin for increased biogas production in a biorefinery setting).

Supplementary material

226_2019_1088_MOESM1_ESM.pdf (487 kb)
Supplementary material 1 (PDF 487 kb)

References

  1. Aarum I, Devle H, Ekeberg D, Horn SJ, Stenstrøm Y (2017) The effect of flash pyrolysis temperature on compositional variability of pyrolyzates from birch lignin. J Anal Appl Pyrolysis 127:211–222.  https://doi.org/10.1016/j.jaap.2017.08.003 CrossRefGoogle Scholar
  2. Aarum I, Devle H, Ekeberg D, Horn SJ, Stenstrøm Y (2018) Characterization of pseudo-lignin from steam exploded birch ACS. Omega 3:4924–4931.  https://doi.org/10.1021/acsomega.8b00381 CrossRefGoogle Scholar
  3. Asmadi M, Kawamoto H, Saka S (2011) Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. J Anal Appl Pyrolysis 92:417–425.  https://doi.org/10.1016/j.jaap.2011.08.003 CrossRefGoogle Scholar
  4. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M-M, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. J Phys Chem C 113:9644–9654.  https://doi.org/10.1021/jp901582x CrossRefGoogle Scholar
  5. Biermann CJ, Schultz TP, McGinnia GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128.  https://doi.org/10.1080/02773818408062286 CrossRefGoogle Scholar
  6. Bjorkman A (1956) Finely divided wood. I. Extraction of lignin with neutral solvents. Sven Papperstidn 59:477–485Google Scholar
  7. Brauns FE (1962) Soluble native lignin, milled wood lignin, synthetic lignin, and the structure of lignin. Holzforsch Int J Biol Chem Phys Technol Wood.  https://doi.org/10.1515/hfsg.1962.16.4.97 Google Scholar
  8. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94.  https://doi.org/10.1016/j.biombioe.2011.01.048 CrossRefGoogle Scholar
  9. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  10. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478.  https://doi.org/10.1016/j.rser.2015.12.069 CrossRefGoogle Scholar
  11. Chen X, Lawoko M, van Heiningen A (2010) Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 101:7812–7819.  https://doi.org/10.1016/j.biortech.2010.05.006 CrossRefGoogle Scholar
  12. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608.  https://doi.org/10.1016/j.rser.2014.06.013 CrossRefGoogle Scholar
  13. Date NS, Biradar NS, Chikate RC, Rode CV (2017) Effect of reduction protocol of pd catalysts on product distribution in furfural hydrogenation. ChemistrySelect 2:24–32.  https://doi.org/10.1002/slct.201601790 CrossRefGoogle Scholar
  14. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh-Werkst 57:191–202.  https://doi.org/10.1007/s001070050039 CrossRefGoogle Scholar
  15. Gomez-Pardo D, d’Angelo J (1991) Revision of structure of a “C56O3” substance generated in the pyrolysis of biomass materials. Tetrahedron Lett 32:3067–3068.  https://doi.org/10.1016/0040-4039(91)80690-8 CrossRefGoogle Scholar
  16. Heikkinen H, Elder T, Maaheimo H, Rovio S, Rahikainen J, Kruus K, Tamminen T (2014) Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods. J Agric Food Chem 62:10437–10444.  https://doi.org/10.1021/jf504622j CrossRefGoogle Scholar
  17. Herzfeld J, Rand D, Matsuki Y, Daviso E, Mak-Jurkauskas M, Mamajanov I (2011) Molecular structure of humin and melanoidin via solid state NMR. J Phys Chem B 115:5741–5745.  https://doi.org/10.1021/jp1119662 CrossRefGoogle Scholar
  18. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12.  https://doi.org/10.1016/j.biortech.2012.04.037 CrossRefGoogle Scholar
  19. Hu F, Jung S, Ragauskas A (2013) Impact of pseudolignin versus dilute acid-pretreated lignin on enzymatic hydrolysis of cellulose. ACS Sustain Chem Eng 1:62–65.  https://doi.org/10.1021/sc300032j CrossRefGoogle Scholar
  20. Jacquet N, Richel A (2017) Adaptation of severity factor model according to the operating parameter variations which occur during steam explosion process. In: Ruiz HA, Hedegaard Thomsen M, Trajano HL (eds) Hydrothermal processing in biorefineries: production of bioethanol and high added-value compounds of second and third generation biomass. Springer, Cham, pp 333–351.  https://doi.org/10.1007/978-3-319-56457-9_13 CrossRefGoogle Scholar
  21. Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54:2593–2598.  https://doi.org/10.1021/ie503151g CrossRefGoogle Scholar
  22. Jurak E (2015) How mushrooms feed on compost: conversion of carbohydrates and linin in industrial wheat straw based compost enabling the growth of Agaricus bisporus. Wageningen University, WageningenGoogle Scholar
  23. Li S, Lundquist K, Westermark U (2000) Cleavage of arylglycerol β-aryl ethers under neutral and acid conditions. Nord Pulp Pap Res J 15:292–299.  https://doi.org/10.3183/NPPRJ-2000-15-04-p292-299 CrossRefGoogle Scholar
  24. Li J, Henriksson G, Gellerstedt G (2005) Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 125:175.  https://doi.org/10.1385/ABAB:125:3:175 CrossRefGoogle Scholar
  25. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068.  https://doi.org/10.1016/j.biortech.2006.10.018 CrossRefGoogle Scholar
  26. Li Y, Liu W, Hou Q, Han S, Wang Y, Zhou D (2014) Release of acetic acid and its effect on the dissolution of carbohydrates in the autohydrolysis pretreatment of poplar prior to chemi-thermomechanical pulping. Ind Eng Chem Res 53:8366–8371.  https://doi.org/10.1021/ie500637a CrossRefGoogle Scholar
  27. Luijkx GCA, van Rantwijk F, van Bekkum H (1993) Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose. Carbohydr Res 242:131–139.  https://doi.org/10.1016/0008-6215(93)80027-C CrossRefGoogle Scholar
  28. Mednick ML (1962) The acid–base-catalyzed conversion of aldohexose into 5-(Hydroxymethyl)-2-furfural2. J Org 27:398–403.  https://doi.org/10.1021/jo01049a013 CrossRefGoogle Scholar
  29. Moye C (1966) The formation of 5-hydroxymethylfurfural from hexoses. Aust J Chem 19:2317–2320.  https://doi.org/10.1071/CH9662317 CrossRefGoogle Scholar
  30. Nef JU (1910) Dissoziationsvorgänge in der Zuckergruppe. Über das Verhalten der Zuckerarten gegen Ätzalkalien. (Dissociation processes in sugars: On the behaviour of sugars towards caustic alkali) (In German). Justus Liebigs Annalen der Chemie 376:1–119.  https://doi.org/10.1002/jlac.19103760102 CrossRefGoogle Scholar
  31. Newth FH (1951) The formation of furan compounds from hexoses. In: Hudso CS, Canto SM (eds) Advances in carbohydrate chemistry, vol 6. Academic Press, Cambridge, pp 83–106.  https://doi.org/10.1016/S0096-5332(08)60064-8 Google Scholar
  32. Nimz H (1966) A new type of rearrangement in the lignin field. Angewandte Chemie Int Edit Engl 5:843.  https://doi.org/10.1002/anie.196608431 CrossRefGoogle Scholar
  33. Obst JR, Kirk TK (1988) Isolation of lignin. Methods Enzymol 161:3–12CrossRefGoogle Scholar
  34. Ohnishi A, Katō K (1977) Thermal Decomposition of Tobacco Cell-wall Polysaccharides. Beiträge zur Tabakforschung International/Contributions to Tobacco Research 9(3):147–152.  https://doi.org/10.2478/cttr-2013-0439 CrossRefGoogle Scholar
  35. Overend RP, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments [and discussion. Philos Trans R Soc Lond A Math Phys Eng Sci 321:523–536CrossRefGoogle Scholar
  36. Rahikainen JL et al (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278.  https://doi.org/10.1016/j.biortech.2013.01.075 CrossRefGoogle Scholar
  37. Rasmussen H, Tanner D, Sorensen HR, Meyer AS (2017) New degradation compounds from lignocellulosic biomass pretreatment: routes for formation of potent oligophenolic enzyme inhibitors. Green Chem 19:464–473.  https://doi.org/10.1039/C6GC01809B CrossRefGoogle Scholar
  38. Rice JA (2001) Humin. Soil Sci 166:848–857.  https://doi.org/10.1097/00010694-200111000-00009 CrossRefGoogle Scholar
  39. Schultz TP, Biermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Prod Res Dev 22:344–348.  https://doi.org/10.1021/i300010a034 CrossRefGoogle Scholar
  40. Sette M, Wechselberger R, Crestini C (2011) Elucidation of lignin structure by quantitative 2D NMR. Chem Eur J 17:9529–9535.  https://doi.org/10.1002/chem.201003045 CrossRefGoogle Scholar
  41. Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72.  https://doi.org/10.1080/02773819708003118 CrossRefGoogle Scholar
  42. Shinde SD, Meng X, Kumar R, Ragauskas AJ (2018) Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem 20:2192–2205.  https://doi.org/10.1039/C8GC00353J CrossRefGoogle Scholar
  43. Sluiter A, Hames B, Ruiz R, Scarlata C, J Sluiter, Templeton D, Crocker D (2004) Determination of structural carbohydrates and lignin in biomass [electronic resource]. NREL/TP-510-42618 National Renewable Energy Laboratory, Laboratory Analytical Procedure (LAP)Google Scholar
  44. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass [electronic resource]. Technical Report NREL/TP-510-42622. National Renewable Energy Laboratory, Laboratory Analytical Procedure (LAP)Google Scholar
  45. Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—a review. Biomass Convers Biorefinery.  https://doi.org/10.1007/s13399-017-0243-0 Google Scholar
  46. Sturgeon MR et al (2014) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485.  https://doi.org/10.1021/sc400384w CrossRefGoogle Scholar
  47. Sun Y, Liu P, Liu Z (2016) Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC. Carbohydr Polym 142:177–182.  https://doi.org/10.1016/j.carbpol.2016.01.053 CrossRefGoogle Scholar
  48. Sundqvist B, Karlsson O, Westermark U (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40:549–561.  https://doi.org/10.1007/s00226-006-0071-z CrossRefGoogle Scholar
  49. Uden PC (1993) Nomenclature and terminology for analytical pyrolysis (IUPAC Recommendations 1993). Pure Appl Chem 65:2405–2409.  https://doi.org/10.1351/pac199365112405 CrossRefGoogle Scholar
  50. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597.  https://doi.org/10.1021/cr300182k CrossRefGoogle Scholar
  51. van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. Chemsuschem 6:1745–1758.  https://doi.org/10.1002/cssc.201300332 CrossRefGoogle Scholar
  52. van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem 17:4383–4392.  https://doi.org/10.1039/C5GC00327J CrossRefGoogle Scholar
  53. Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev 117:6984–7052.  https://doi.org/10.1021/acs.chemrev.6b00550 CrossRefGoogle Scholar
  54. Vivekanand V, Olsen EF, Eijsink VGH, Horn SJ (2013) Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch. Bioresour Technol 127:343–349.  https://doi.org/10.1016/j.biortech.2012.09.118 CrossRefGoogle Scholar
  55. Wu S, Argyropoulos DS (2003) An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci 29:235–240Google Scholar
  56. Xianzhi M, Ragauskas A (2017) Pseudo-lignin formation during dilute acid pretreatment for cellulosic ethanol. Recent Adv Petrochem Sci 1:1–5.  https://doi.org/10.19080/RAPSCI.2017.01.555551 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway

Personalised recommendations