Advertisement

Wood Science and Technology

, Volume 52, Issue 6, pp 1555–1568 | Cite as

New method for determination of shear properties of wood

  • Robert Krüger
  • Beate Buchelt
  • André Wagenführ
Original

Abstract

A new method for the determination of shear modulus and shear strength is presented in this study using a shear or picture frame. A shear frame in accordance with DIN SPEC 4885 is in other fields, such as fibre reinforced composites, state of the art. Here, a square test specimen with recessed corners is held in the shear frame and subjected to a quite uniform shear deformation state. To determine the shear modulus and the shear strength, tensile load acting on the shear frame and the associated shear strain are measured. This method has the advantage of simultaneous determination of the shear modulus and the shear strength. Thin square wooden plates of European beech (Fagus sylvatica L.) were tested in all anatomical directions. The results show good accordance with literature values. The highest values of shear modulus and shear strength were yielded for the LR plane, followed by the values in the LT plane. The tests in the RT plane clearly resulted in the lowest values.

Notes

Acknowledgements

The authors would like to thank the colleagues of the Institute of Aerospace Engineering of the Technische Universität Dresden for providing the shear frame and their kind support during its application.

References

  1. Aicher S, Christian Z, Hirsch M (2016) Rolling shear modulus and strength of beech wood laminations. Holzforschung 70(8):773–781CrossRefGoogle Scholar
  2. Arcan M (1984) The Iosipescu shear test as applied to composite materials—discussion. Exp Mech 24(1):66–67CrossRefGoogle Scholar
  3. Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18(4):141–146CrossRefGoogle Scholar
  4. ASTM D143 (1994) Standard test methods for small clear specimens of timber. American Society for Testing and Materials, West ConshohockenGoogle Scholar
  5. Bachtiar EV, Rüggeberg M, Hering S, Niemz P (2017) Estimating shear properties of walnut wood: a combined experimental and theoretical approach. Mater Struct 50(6):248CrossRefGoogle Scholar
  6. Berner M, Gier J, Scheffler M, Hardtke H-J (2007) Identifikation von Werkstoffparametern an Platten aus Holz und Holzwerkstoffen mittels Modalanalyse (Identification of material parameters of wood and wood based panels by means of modal analysis). Holz Roh Werkst 65:367–375CrossRefGoogle Scholar
  7. Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company Malabar, FloridaGoogle Scholar
  8. Brabec M, Lagaňa R, Milch J, Tippner J, Sebera V (2017) Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test. Wood Sci Technol 51:29–45CrossRefGoogle Scholar
  9. Bucur V (2006) Acoustics of wood, 2nd edn. Springer Series in Wood Science, Springer, BerlinGoogle Scholar
  10. Bugiel A, Hähnel F, Wolf K, Strauß J, Kuntzsch T (2017) Enhanced test devices for the development of novel paper-like materials for sandwich-structures. In: I’Anson SJ (ed) Trans. XVIth fundamental research symposium, Oxford, FRC, pp 27–41Google Scholar
  11. DIN 52187 (1979) Testing of wood; determination of ultimate shearing stress parallel to grain. DIN German Institute of Standardization, BerlinGoogle Scholar
  12. DIN 53339 Part 2 (1982) Testing of reinforced plastics; shear test on plane specimens. DIN German Institute of Standardization, BerlinGoogle Scholar
  13. DIN EN 789 (2004) Timber structures-Test methods-Determination of mechanical properties of wood based panels. European Committee for StandardizationGoogle Scholar
  14. DIN EN 13183-1 (2002) Moisture content of a piece of sawn timber Part 1: Determination by oven dry method. DIN German Institute of Standardization, BerlinGoogle Scholar
  15. DIN SPEC 4885 (2014) Fibre-reinforced plastic composites –Shear test method using a shear frame for the determination of the in-plane shear stress/shear strain response and shear modulus. DIN German Institute of Standardization, BerlinGoogle Scholar
  16. Dumond P, Baddour N (2015) Experimental investigation of the mechanical properties and natural frequencies of simply supported Sitka spruce plates. Wood Sci Technol 49:1137–1155CrossRefGoogle Scholar
  17. Grimsel M (1998) Computer-aided identification of mechanical wood properties. Wood Struct Prop 98:185–192Google Scholar
  18. Haines DW, Leban JM, Herbé C (1996) Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Sci Technol 30:253–263CrossRefGoogle Scholar
  19. Hearmon RFS, Barkas WW (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and Sitka spruce. Proc Phys Soc 53:674–680CrossRefGoogle Scholar
  20. Hering, S. (2011) Charakterisierung und Modellierung der Materialeigenschaften von Rotbuchenholz zur Simulation von Holzverklebungen (Characterization and modeling of beech wood for simulation of wood bondings). Dissertation ETH ZürichGoogle Scholar
  21. Hering S, Keunecke D, Niemz P (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci Technol 46:927–938CrossRefGoogle Scholar
  22. Horvath N, Molnar S, Niemz P (2008) Untersuchungen zum Einfluss der Holzfeuchte auf ausgewählte Eigenschaften von Fichte, Eiche und Rotbuche (Examinations on the influence of wood moisture on selected wood properties of spruce, oak and beech). Holztechnologie 49:10–15Google Scholar
  23. Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRefGoogle Scholar
  24. Liu JY (1984) New shear strength test for solid wood. Wood Fiber Sci 8(4):252–261Google Scholar
  25. Liu JY (2002) Analysis of off-axis tension test of wood specimens. Wood Fiber Sci 34:205–211Google Scholar
  26. Longo R, Laux D, Pagano S, Delaunay T, Le Clézio E, Arnould O (2018) Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): a comprehensive study. Wood Sci Technol 52(2):383–402.  https://doi.org/10.1007/s00226-017-0980-z CrossRefGoogle Scholar
  27. Majano-Majano A, Fernandez-Cabo JL, Hoheisel S, Klein S (2012) A test method for characterizing clear wood using a single specimen. Exp Mech 52:1079–1096CrossRefGoogle Scholar
  28. Milch J, Brabec M, Sebera V, Tippner J (2017) Verification of the elastic material characteristics of Norway spruce and European beech in the field of shear behaviour by means of digital image correlation (DIC) for finite element analysis (FEA). Holzforschung 71(5):405–414CrossRefGoogle Scholar
  29. Müller U, Ringhofer A, Brandner R (2015) Schickhofer G (2015) Homogeneous shear stress field of wood in an Arcan shear test configuration measured by means of electronic speckle pattern interferometry: description of the test setup. Wood Sci Technol 49:1123–1136CrossRefGoogle Scholar
  30. Ozyhar T, Hering S, Sanabria SJ, Niemz P (2013) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol 47:329–341CrossRefGoogle Scholar
  31. Sretenovic A, Müller U, Gindl W, Teischinger A (2004) New shear assay for the simultaneous determination of shear strength and shear modulus in solid wood: finite element modelling and experimental results. Wood Fiber Sci 36(3):302–310Google Scholar
  32. Stamer J, Siegelschmidt H (1935) Elastische Formänderungen der Hölzer (Elastic deformations of wood). Zeitschrift des Vereins deutscher Ingenieure 77. Heft 10:503–505 (German) Google Scholar
  33. Xavier JC, Garrido NM, Oliveira M, Moraisa JL, Camanho PP, Pierron FA (2004) comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Compos A 35:827–840CrossRefGoogle Scholar
  34. Xavier J, Avril S, Pierron F, Morais J (2007) Novel experimental approach for longitudinal-radial stiffness characterisation of clear wood by a single test. Holzforschung 61:573–581CrossRefGoogle Scholar
  35. Xavier JC, Oliveira M, Morais J, Pinto T (2009) Measurement of the shear properties of clear wood by the Arcan test. Holzforschung 63:217–225CrossRefGoogle Scholar
  36. Yoshihara H (2012) Shear modulus and shear strength evaluation of solid wood by a modified ISO 15310 square-plate twist method. Drvna Industrija 63(1):51–55CrossRefGoogle Scholar
  37. Yoshihara H, Ohsaki O, Kubojima Y, Ohta M (1999) Applicability of the Iosipescu shear test on the measurement of the shear properties of wood. J Wood Sci 45:24–29CrossRefGoogle Scholar
  38. Zhang L, Yang N (2017) Evaluation of a modified Iosipescu shear test method for determining the shear properties of clear wood. Wood Sci Technol 51:323–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany

Personalised recommendations