Advertisement

Wood Science and Technology

, Volume 51, Issue 5, pp 969–996 | Cite as

Dimensional stability of multi-layered wood-based panels: a review

  • Axel Rindler
  • Oliver Vay
  • Christian Hansmann
  • Ulrich Müller
Original

Abstract

The deformation of wood due to swelling and shrinkage induced by water absorption and desorption of cell wall components is still challenging the engineering of dimensionally stable multi-layer wood-based panels. To overcome this problem and to accelerate the developing process of new wood-based panels, numerical methods developed to describe the deformation stability of man-made composites could possibly be applied to wood materials too. Relevant influencing factors on the hygro-thermal deformation behaviour of wood are needed as input parameters for a numerical description of the material behaviour. These factors are collected and described. Moreover, an overview of empirical and numerical approaches is given and the mathematical description of the deformation behaviour is discussed. Numerical models are based on micromechanical theories, which consider the hygro-thermal deformation of composite materials. Micromechanical methods from composite mechanics applied to wood at different scale levels are examined. Challenges that may be considered when using micromechanical approaches to calculate the hygroscopical deformation of multi-layered materials are discussed.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support by the Competence Centre for Wood Composites and Wood Chemistry, Wood K plus, Austria.

References

  1. Abe K, Yamamoto H (2006) Behavior of the cellulose microfibril in shrinking woods. J Wood Sci 52(1):15–19CrossRefGoogle Scholar
  2. Abouhamzeh M, Sinke J, Jansen KMB, Benedictus R (2015) Closed form expression for residual stresses and warpage during cure of composite laminates. Compos Struct 133:902–910CrossRefGoogle Scholar
  3. Almgren KM, Gamstedt EK, Varna J (2010) Contribution of wood fiber hygroexpansion to moisture induced thickness swelling of composite plates. Polym Compos 31(5):762–771Google Scholar
  4. Astley RJ, Harrington JJ, Stol KA (1997) Mechanical modelling of wood microstructure, an engineering approach. Trans Inst Prof Eng N Z Electr Mech Chem Eng Sect 24(1):21Google Scholar
  5. Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Holz Roh- Werkst 56(1):43–50CrossRefGoogle Scholar
  6. Bader H, Niemz P, Sonderegger W (2007) Untersuchungen zum Einfluss des Plattenaufbaus auf ausgewählte Eigenschaften von Massivholzplatten (Investigation on the influence of the panel composition on selected properties of three-layer solid wood panels) (in German). Holz Roh- Werkst 65(3):173–181CrossRefGoogle Scholar
  7. Bader TK, Hofstetter K, Hellmich C, Eberhardsteiner J (2010a) The poroelastic role of water in cell walls of the hierarchical composite “softwood. Acta Mech 217(1–2):75–100Google Scholar
  8. Bader TK, Hofstetter K, Hellmich C, Eberhardsteiner J (2010b) Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level. ZAMM J Appl Math Mech 90(10–11):750–767CrossRefGoogle Scholar
  9. Barber NF (1968) A theoretical model of shrinking wood. Holzforschung 22(4):97–103CrossRefGoogle Scholar
  10. Barber NF, Meylan B (1964) The anisotropic shrinkage of wood. A theoretical model. Holzforschung 18(5):146–156CrossRefGoogle Scholar
  11. Barkas WW (1949) The swelling of wood under stress. HM Stationary Office, LondonGoogle Scholar
  12. Bauchau OA, Craig JI (2009) Euler–Bernoulli beam theory. In: Bauchau OA, Craig JI (eds) Structural analysis. Springer, Netherlands, pp 173–221CrossRefGoogle Scholar
  13. Bergander A, Salmén L (2002) Cell wall properties and their effect on the mechanical properties of fibers. J Mater Sci 37:151–156CrossRefGoogle Scholar
  14. Blanchet P, Gendron G, Coultier A, Beauregard R (2005) Numerical prediction of engineered wood flooring deformation. Wood Fiber Sci 37(3):484–496Google Scholar
  15. Blomqvist L, Johansson J, Sandberg D (2013a) Moisture-induced distortion of laminated veneer products. In: Proceedings of 9th meeting of the Northern European network for wood science and engineering (WSE), pp 178–183Google Scholar
  16. Blomqvist L, Johansson J, Sandberg D (2013b) Shape stability of laminated veneer products—how to decrease the negative effects of fibre deviation? In: Forest Products Society (FPS) 67th international convention, June 9–11, Austin Texas, USAGoogle Scholar
  17. Blomqvist L, Johansson J, Sandberg D (2013c) Shape stability of laminated veneer products—an experimental study of the influence on distortion of some material and process parameters. Wood Mat Sci Eng 8(3):198–211CrossRefGoogle Scholar
  18. Blomqvist L, Sandberg D, Johansson J (2014) Influence of veneer orientation on shape stability of plane laminated veneer products. Wood Mater Sci Eng 9(4):224–232CrossRefGoogle Scholar
  19. Blumer S (2006) Moisture induced stresses and deformations in parquet floors—an experimental and numerical study. Department of Construction Sciences Lund University Sweden Structural MechanicsGoogle Scholar
  20. Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold Company Inc, New YorkGoogle Scholar
  21. Böhm HJ (2016) A short introduction to basic aspects of continuum micromechanics. Cdl-fmd Report 3 (1998)Google Scholar
  22. Brouse D (1961) Some causes of warping in plywood and veneered products. Forest Products Laboratory, U.S. Department of Agriculture, MadisonGoogle Scholar
  23. Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226(4):981–987PubMedCrossRefGoogle Scholar
  24. Cai Z (2004) Evaluating the warping of laminated particleboard panels. In: 7th Pacific Rim bio-based composites symposium vol 2, pp 69–79Google Scholar
  25. Cai Z, Dickens JR (2004) Wood composite warping: modeling and simulation. Wood Timber Sci 36(2):174–185Google Scholar
  26. Caliri MF, Ferreira AJM, Tita V (2016) A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method. Compos Struct 156:63–77CrossRefGoogle Scholar
  27. Cantera M, Romera J, Adarraga I, Mujika F (2012) Hygrothermal effects in composites: influence of geometry and determination of transverse coefficient of thermal expansion. J Reinf Plast Compos 31(19):1270–1281CrossRefGoogle Scholar
  28. Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley, New YorkCrossRefGoogle Scholar
  29. Cave I (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2(4):268–278CrossRefGoogle Scholar
  30. Cave ID (1972) Swelling of a fibre reinforced composite in which the matrix is water reactive. Wood Sci Technol 6(2):157–161CrossRefGoogle Scholar
  31. Choi H, Ahn K, Nam J-D, Chun H (2001) Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos A Appl Sci Manuf 32(5):709–720CrossRefGoogle Scholar
  32. Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17(5):178–188CrossRefGoogle Scholar
  33. Cloutier A, Gendron G, Blanchet P, Ganev S, Beauregard R (2001) Finite element modeling of dimensional stability in layered wood composites. In: 35th International particleboard/composite materials symposium. Washington State University, Pullman, Washington, pp 63–72Google Scholar
  34. Dang J, Tang Y (1986) Calculation of the room-temperature shapes of unsymmetric laminates. In: Proceedings of the international symposium on composite materials and structures, pp 201–206Google Scholar
  35. Dano ML, Hyer MW (1998) Thermally-induced deformation behaviour of unsymmetric laminates. Int J Solids Struct 35:2101–2120CrossRefGoogle Scholar
  36. De Borst R, Crisfield M, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New YorkCrossRefGoogle Scholar
  37. Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190PubMedCrossRefGoogle Scholar
  38. Deteix J, Blanchet P, Fortin A, Cloutier A (2008) Finite element modeling of laminate wood composites hygromechanical behavior considering diffusion effects in the adhesive layers. Wood Fiber Sci 40(1):132–143Google Scholar
  39. Dongmei W, Huxiang G, Ziyou B (2013) Effect investigation of relative humidity and temperature on multi-layer corrugated sandwich structures. J Sandwich Struct Mater 15(2):156–167CrossRefGoogle Scholar
  40. Drago A, Pindera MJ (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67(6):1243–1263CrossRefGoogle Scholar
  41. Dundar T, Ayrilmis N, Candan Z, Sahin HT (2009) Dimensional stability of fire-retardant-treated laminated veneer lumber. For Prod J 59:18–23Google Scholar
  42. Eberhardsteiner J (2013) Mechanisches Verhalten von Fichtenholz: Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften (Mechanical behaviour of spruce: Experimental determination of the biaxial strength properties) (in German). Springer, BerlinGoogle Scholar
  43. Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—A multiscale homogenization approach and its experimental validation. Compos Sci Technol 71(2):134–144CrossRefGoogle Scholar
  44. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2012) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161CrossRefGoogle Scholar
  45. Eriksson J, Ormarsson S, Petersson H (2004) An experimental study of shape stability in glued boards. Holz Roh- Werkst 62(3):225–232CrossRefGoogle Scholar
  46. Falcao L, Gomes A, Suleman A (2009) Morphing wingtip devices based on multistable composites. In: Applied vehicle technology panel symposium on morphing vehicles. Evora, Portugal. NATO Research and Technology OrganisationGoogle Scholar
  47. Gamstedt EK, Bader TK, de Borst K (2013) Mixed numerical–experimental methods in wood micromechanics. Wood Sci Technol 47(1):183–202CrossRefGoogle Scholar
  48. Gereke T (2009) Moisture-induced stresses in cross-laminated wood panels. Dissertation Eidgenössische Technische Hochschule ETH-Zürich Nr. 18427Google Scholar
  49. Gereke T, Niemz P, Bader H, Blumer S, Clauss S, Weber A (2006) Untersuchung zur Optimierung von Massivholzplatten - 1. Teilbericht (Study on the optimisation of solid wood panels - 1st part report) (In German). Research report for the Kuratorium des Fonds zur Förderung der Wald- und HolzforschungGoogle Scholar
  50. Gereke T, Schnider T, Hurst A, Niemz P (2008) Identification of moisture-induced stresses in cross-laminated wood panels from beech wood (Fagus sylvatica L.). Wood Sci Technol 43(3–4):301–315Google Scholar
  51. Gereke T, Gustafsson PJ, Persson K, Niemz P (2009) Experimental and numerical determination of the hygroscopic warping of cross-laminated solid wood panels. Holzforschung 63(3):340–347CrossRefGoogle Scholar
  52. Gereke T, Hass P, Niemz P (2010) Moisture-induced stresses and distortions in spruce cross-laminates and composite laminates. Holzforschung 64(1):127–133CrossRefGoogle Scholar
  53. Gerhards CC (2007) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci 14(1):4–36Google Scholar
  54. Gigliotti M, Minervino M, Grandidier JC, Lafarie-Frenot MC (2012) Predicting loss of bifurcation behaviour of 0/90 unsymmetric composite plates subjected to environmental loads. Compos Struct 94(9):2793–2808CrossRefGoogle Scholar
  55. Gindl W, Müller U (2005) Shear strain distribution in PRF and PUR bonded 3–ply wood sheets by means of electronic laser speckle interferometry. Wood Sci Technol 40(5):351–357CrossRefGoogle Scholar
  56. Gindl W, Sretenovic A, Vincenti A, Müller U (2005) Direct measurement of strain distribution along a wood bond line. Part 2: effects of adhesive penetration on strain distribution. Holzforschung 59(3):307–310CrossRefGoogle Scholar
  57. Gratzl A (1963) Einflüsse auf das Stehvermögen von Möbelteilen (Effect on the stability of furniture parts) (in German). Holz Roh- Werkst 21(4):149–153Google Scholar
  58. Grossman PUA (1973) Bowing and cupping due to imbalance in plywood. For Prod J 23(6):54–58Google Scholar
  59. Gu H, Zink-Sharp A, Sell J (2001) Hypothesis on the role of cell wall structure in differential transverse shrinkage of wood. Holz Roh Werkst 59(6):436–442CrossRefGoogle Scholar
  60. Hackmann MM, Meuwissen MHH, Bots TL, Buijs JAHM, Broek KM, Kinderman R, Tanck OBF, Schuurmans FM (2004) Technical feasibility study on polycarbonate solar panels. Sol Energy Mater Sol Cells 84(1–4):105–115CrossRefGoogle Scholar
  61. Hamamoto A, Hyer MW (1987) Non-linear temperature-curvature relationships for unsymmetric graphite-epoxy laminates. Int J Solids Struct 23(7):919–935CrossRefGoogle Scholar
  62. Hansmann C, Wimmer R, Teischinger A (2002) Permeability of wood—a review. Wood Res/Drevarsky Vyskum 47(4):1–16Google Scholar
  63. Haynes RA, Armanios EA (2012) The challenge of achieving hygrothermal stability in composite laminates with optimal couplings. Int J Eng Sci 59:74–82CrossRefGoogle Scholar
  64. Haynes R, Cline J, Shonkwiler B, Armanios E (2016) On plane stress and plane strain in classical lamination theory. Compos Sci Technol 127:20–27CrossRefGoogle Scholar
  65. Heebink BG, Kuenzi EW, Maki AC (1964) Linear movement of plywood and flakeboards as related to the longitudinal movement of wood. Forest Products Lab Madison WIS FSRN-FPL-073Google Scholar
  66. Hendershot OP (1924) Thermal expansion of wood. Science 60:456–457PubMedCrossRefGoogle Scholar
  67. Hofstetter K, Gamstedt EK (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung 63(2):130–138CrossRefGoogle Scholar
  68. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A Solids 24(6):1030–1053CrossRefGoogle Scholar
  69. Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13(2):131–145CrossRefGoogle Scholar
  70. Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61(4):343–351CrossRefGoogle Scholar
  71. Hyer MW (1981a) Calculation of the room-temperature shapes of unsymmetric laminates. J Compos Mater 15:296–310CrossRefGoogle Scholar
  72. Hyer MW (1981b) Some observations on the cured shape of thin unsymmetric laminates. J Compos Mater 15(2):175–194CrossRefGoogle Scholar
  73. Hyer MW (1982) The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J Compos Mater 16(4):318–340CrossRefGoogle Scholar
  74. Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185(1):89–98PubMedCrossRefGoogle Scholar
  75. Joffre T, Isaksson P, Dumont PJJ, Roscoat SR, Sticko S, Orgéas L, Gamstedt EK (2016) A method to measure moisture induced swelling properties of a single wood cell. Exp Mech 56(6):723–733CrossRefGoogle Scholar
  76. Joshi N, Muliana A (2010) Deformation in viscoelastic sandwich composites subject to moisture diffusion. Compos Struct 92(2):254–264CrossRefGoogle Scholar
  77. Jun WJ, Hong CS (1990) Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates. Compos Sci Technol 38(1):55–67CrossRefGoogle Scholar
  78. Jun WJ, Hong CS (1992) Cured shape of unsymmetric laminates with arbitrary lay-up angles. J Reinf Plast Compos 11(12):1352–1366CrossRefGoogle Scholar
  79. Kelly MW, Hart CA (1970) Water vapor sorption rates by wood cell walls. Wood Fiber Sci 1(4):270–282Google Scholar
  80. Keylwerth R (1956) Dimensionsstabilität und Gleichmäßigkeit von Möbel- und Türplatten. Holz Roh- Werkst 14(9):353–360 (in German) English edition: Keylwerth R (1956) Dimensional stability and uniformity of furniture and door panelsGoogle Scholar
  81. Keylwerth R (1962) Freie und behinderte Quellung von Holz. Erste Mitteilung: Freie Quellung (Investigations on free and restraint swelling of wood—Part I: Free swelling) (in German). Holz Roh- Werkst 20:252–259CrossRefGoogle Scholar
  82. King D, Inderwildi O, Carey C (2009) Advanced aerospace materials: past, present and future. Aviat Environ 22:27Google Scholar
  83. Kollmann F (1982) Technologie des Holzes und der Holzwerkstoffe (Technology of wood and wood based products) (in German), vol 1–2. Springer, BerlinGoogle Scholar
  84. Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433CrossRefGoogle Scholar
  85. Konnerth J, Gindl W (2008) Observation of the influence of temperature on the mechanical properties of wood adhesives by nanoindentation. Holzforschung 62(6):714–717CrossRefGoogle Scholar
  86. Konnerth J, Gindl W, Müller U (2006a) Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. J Appl Polym Sci 103(6):3936–3939CrossRefGoogle Scholar
  87. Konnerth J, Jäger A, Eberhardsteiner J, Müller U, Gindl W (2006b) Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. J Appl Polym Sci 102(2):1234–1239CrossRefGoogle Scholar
  88. Kübler H, Geissen A (1967) Studie über das Stehvermögen von Türen bei einseitiger Klimaeinwirkung (Study on the dimensional stability of doors exposed to one-sided atmospheric conditions) (in German). Holz Roh- Werkst 25(11):429–435CrossRefGoogle Scholar
  89. Lang EM (1993) Modeling the behavior of wood-based composite sheathing under hygrothermal load. Doctoral Dissertation Virgina TechGoogle Scholar
  90. Lang EM, Loferski JR, Dolan JD (1995) Hygroscopic deformation of wood-based composite panels. For Prod J 45(3):67Google Scholar
  91. Lanvermann C, Wittel FK, Niemz P (2013) Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. Eur J Wood Prod 72(1):43–52CrossRefGoogle Scholar
  92. Lekhnitskii SG (1950) Theory of Elasticity of an Anisotropic Elastic Body. Gostekhizdat, Moscow (in Russian). Theory of Elasticity of an Anisotropic Elastic Body: Holden-Day, San Francisco (in English, 1963)Google Scholar
  93. Mackerle J (2005) Finite element analyses in wood research: a bibliography. Wood Sci Technol 39(7):579–600CrossRefGoogle Scholar
  94. Malekmohammadi S, Zobeiry N, Gereke T, Tressou B, Vaziri R (2014) A comprehensive multi-scale analytical modelling framework for predicting the mechanical properties of strand-based composites. Wood Sci Technol 49(1):59–81CrossRefGoogle Scholar
  95. Marklund E, Varna J (2009) Modeling the hygroexpansion of aligned wood fiber composites. Compos Sci Technol 69(7–8):1108–1114CrossRefGoogle Scholar
  96. Mattioni F, Weaver PM, Potter KD, Friswell MI (2008) The application of thermally induced multistable composites to morphing aircraft structures. In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring, pp 693012-693012-693011Google Scholar
  97. Mishnaevsky L, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci 44(2):363–370CrossRefGoogle Scholar
  98. Müller U (2006) Relationship between structural and mechanical properties of wood based materials. University of Natural Resources and Life Science, ViennaGoogle Scholar
  99. Müller U, Sretenovic A, Vincenti A, Gindl W (2005) Direct measurement of strain distribution along a wood bond line. Part 1: shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung 59(3):300–306CrossRefGoogle Scholar
  100. Murata K, Masuda M (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. J Wood Sci 52(4):283–289CrossRefGoogle Scholar
  101. Neagu RC, Gamstedt EK, Lindström M (2005) Influence of wood-fibre hygroexpansion on the dimensional instability of fibre mats and composites. Compos A Appl Sci Manuf 36(6):772–788CrossRefGoogle Scholar
  102. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe (Physics of wood and wood based products) (in German). Carl Hanser Verlag GmbH & Co, KGGoogle Scholar
  103. Norris CB (1964) Warpage of laminated materials due to change in moisture content or temperature. USDS Forest Service. Res. Note FPL-073Google Scholar
  104. Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. Solid Mechanics and Its Applications. Springer, Dordrecht, pp 37–109Google Scholar
  105. Olsson AM, Salmen L (2004) The softening behavior of hemicelluloses related to moisture. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 184–197Google Scholar
  106. Ormarsson S (1999) Numerical analysis of moisture-related distortions in sawn timber. Dissertation. Chalmers University of Technology. GöteborgGoogle Scholar
  107. Ormarsson S, Dahlblom O, Petersson H (2000) A numerical study of the shape stability of sawn timber subjected to moisture variation. Wood Sci Technol 34:207–219CrossRefGoogle Scholar
  108. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRefGoogle Scholar
  109. Peeters LJB, Powell PC, Warnet L (1996) Thermally-induced shapes of unsymmetric laminates. J Compos Mater 30(5):603–626CrossRefGoogle Scholar
  110. Perré P (2002) Wood as a multi-scale porous medium: Observation, Experiment, and Modelling. In: Proceedings of the first international conference of the European Society for wood mechanics, pp 365–384Google Scholar
  111. Pirrera A, Avitabile D, Weaver PM (2010) Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int J Solids Struct 47(25–26):3412–3425CrossRefGoogle Scholar
  112. Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267CrossRefGoogle Scholar
  113. Rafsanjani A, Derome D, Carmeliet J (2013a) Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. Compos Struct 95:607–611CrossRefGoogle Scholar
  114. Rafsanjani A, Lanvermann C, Niemz P, Carmeliet J, Derome D (2013b) Multiscale analysis of free swelling of Norway spruce. Compos A Appl Sci Manuf 54:70–78CrossRefGoogle Scholar
  115. Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11(95):20140126PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rammerstorfer FG (1992) Repetitorium Leichtbau (Repetitorium Lightweight Constructions) (in German). Oldenbourg Verlag Wien, MünchenGoogle Scholar
  117. Rammerstorfer FG, Böhm HJ (2014) Micromechanics for Macroscopic material description of FRPs. In: Hult J, Rammerstorfer FG (eds) Engineering mechanics of fibre reinforced polymers and composite structures. Springer, Vienna, pp 9–50Google Scholar
  118. Rammerstorfer FG, Starlinger A (1994) Lamination Theory and failure mechanism in composite shells. Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures 348:73CrossRefGoogle Scholar
  119. Rammohan B, Chauhan SS, Krishna A (2011) Development of an analytical tool for multilayer stack assemblies. SAE Technical PaperGoogle Scholar
  120. Reddy JN (2014) An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP, OxfordCrossRefGoogle Scholar
  121. Saavedra Flores EI, de Souza Neto EA, Pearce C (2011) A large strain computational multi-scale model for the dissipative behaviour of wood cell-wall. Comput Mater Sci 50(3):1202–1211CrossRefGoogle Scholar
  122. Sairajan KK, Aglietti GS, Mani KM (2016) A review of multifunctional structure technology for aerospace applications. Acta Astronaut 120:30–42CrossRefGoogle Scholar
  123. Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9–10):873–880PubMedCrossRefGoogle Scholar
  124. Salmén L, de Ruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336–350Google Scholar
  125. Sandberg D, Ormarsson S (2007) Numerical simulation of hot-pressed veneer products. Wood Mat Sci Eng 2:130–137CrossRefGoogle Scholar
  126. Schlecht M, Schulte K (1998) Advanced calculation of the room- temperature shapes of unsymmetric laminates. J Compos Mater 33(16):1472–1490CrossRefGoogle Scholar
  127. Schlecht M, Schulte K, Hyer MW (1995) A comparative study for the calculation of the temperature dependent shapes of unsymmetric laminates based on finite element analysis and extended classical lamination theory. Mech Compos Mater 31(3):247–254CrossRefGoogle Scholar
  128. Serrano R, Cassens D (2001) Reducing warp and checking in plantation-grown yellow-poplar 4 by 4’s by reversing part positions and gluing in the green condition. For Prod J 51(11/12):37Google Scholar
  129. Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59(6):641–646CrossRefGoogle Scholar
  130. Siau JF (1995) Influence of moisture on physical properties. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  131. Simpson W (1980) Sorption theories applied on wood. Wood Fiber 12(3):183–195Google Scholar
  132. Skaar C (1988) Hygroexpansion in wood. In: Timell TE (ed) Wood-water relations. Springer, Berlin, pp 122–176CrossRefGoogle Scholar
  133. Stamm K, Witte H (2013) Sandwichkonstruktionen: Berechnung, Fertigung, Ausführung. vol 3 (in German). English edition: Stamm K, Witte H (2013) Sandwich constructions: calculations, manufacture, implementations. Springer, BerlinGoogle Scholar
  134. Starlinger A (1991) Development of efficient finite shell elements for analysis of sandwich structures under large instabilities. VDI-Verlag GmbH, DüsseldorfGoogle Scholar
  135. Stürzenbecher R, Hofstetter K, Schickhofer G, Eberhardsteiner J (2009) Development of high-performance strand boards: multiscale modeling of anisotropic elasticity. Wood Sci Technol 44(2):205–223CrossRefGoogle Scholar
  136. Suchsland O, McNatt JD (1986) Computer simulation of laminated wood panel warping. For Prod J 36:16–23Google Scholar
  137. Suchsland O, Xu D (1992) Determination of swelling stresses in wood-based materials. For Prod J 42(5):25–27Google Scholar
  138. Suchsland O, Feng Y, Xu D (1995) The hygroscopic warping of laminated panels. For Prod J 45(10):57Google Scholar
  139. Takatoya T, Chung K, Wu YJ, Seferis JC (1999) Evaluation of the coefficients of moisture expansion using transient simulated laminates methodology (TSL). In: ICCM-12, edited by D. o. C. E. Polymeric Composites Laboratory, University of Washington. SeattleGoogle Scholar
  140. Telford R, Katnam KB, Young TM (2014) The effect of moisture ingress on through-thickness residual stresses in unsymmetric composite laminates: a combined experimental–numerical analysis. Compos Struct 107:502–511CrossRefGoogle Scholar
  141. Thuvander F, Kifetew G, Berglund LA (2002) Modeling of cell wall drying stresses in wood. Wood Sci Technol 36(2002):241–254CrossRefGoogle Scholar
  142. Tiemann HD (1906) Effect of moisture upon the strength and stiffness of wood, vol 63. US Dept. of Agriculture, Forest ServiceGoogle Scholar
  143. Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am Rev Sci Instrum 11:233–255CrossRefGoogle Scholar
  144. Tong Y, Suchsland O (1993) Application of finite element analysis to panel warping. Holz Roh- Werkst 51(1):55–57CrossRefGoogle Scholar
  145. Tsai CL, Wooh SC (2001) Hygric characterization of woven glass/epoxy composites. Exp Mech 41(1):70–76CrossRefGoogle Scholar
  146. Tsai C-L, Wooh S-C, Hwang S-F, Du Y (2001) Hygric characterization of composites using an antisymmetric cross-ply specimen. Exp Mech 41(3):270–276CrossRefGoogle Scholar
  147. Wagenführ A, Scholz F (2012) Taschenbuch der Holztechnik (Paperback of Wood Technology) (in German), vol 1. Carl Hanser Verlag GmbH Co KG, MunichCrossRefGoogle Scholar
  148. Wolff EG (1999) Thermal expansion of asymmetrical laminates. Thermal Conduct 24:351–367Google Scholar
  149. Wolff EG, Chen H, Oakes DJ (1998) Moisture expansion of honeycomb sandwich panels. Int Sampe Tech Conf 30:105–116Google Scholar
  150. Wolff EG, Chen H, Oakes DW (2000) Hygrothermal deformation of composite sandwich panels. Adv Compos Lett 9(1):35–43Google Scholar
  151. Xu D, Suchsland O (1996) A modified elastic approach to the theoretical determination of the hygroscopic warping of laminated wood panels. Wood Fiber Sci 28(2):194–204Google Scholar
  152. Yamamoto H (1999) A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber’s wood fiber model. Wood Sci Technol 33(4):311–325CrossRefGoogle Scholar
  153. Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51(3):222–233CrossRefGoogle Scholar
  154. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Axel Rindler
    • 1
  • Oliver Vay
    • 1
  • Christian Hansmann
    • 1
  • Ulrich Müller
    • 2
  1. 1.Wood K plus - Competence Centre for Wood Composites and Wood ChemistryLinzAustria
  2. 2.Department of Material Science and Process Engineering, Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life Sciences Vienna (BOKU)TullnAustria

Personalised recommendations