Advertisement

Wood Science and Technology

, Volume 51, Issue 5, pp 1189–1208 | Cite as

Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts

  • B. N. KuznetsovEmail author
  • N. V. Chesnokov
  • O. V. Yatsenkova
  • V. I. Sharypov
  • N. V. Garyntseva
  • N. M. Ivanchenko
  • V. A. Yakovlev
Original

Abstract

Results of the study on green valorization of hardwood biomass into valuable chemicals with the use of solid catalysts were described. The heterogeneous catalytic processes of hemicelluloses and cellulose hydrolysis, wood oxidative fractionation and lignin depolymerization in supercritical spirits are suggested to employ for the green biorefinery of hardwood to xylose, pure cellulose, glucose, alcohols and liquid hydrocarbons.

Notes

Acknowledgements

The reported study was supported by Russian Science Foundation, Grant No. 16-13-10326.

References

  1. Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Roman-Leshkov Yu (2016) Reductive catalytic of corn of corn stover lignin. ACS Sustain Chem Eng 4:6940–6950CrossRefGoogle Scholar
  2. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870CrossRefPubMedGoogle Scholar
  3. Boeriu CG, Fitigau FI, Gosselink RJA, Frissen AE, Stoutjesdijk J, Francisc P (2014) Fractionation of five technical lignins by selective extraction in green solvents and characterization of isolated fractions. Ind Crops Prod 62:481–490CrossRefGoogle Scholar
  4. Bulavchenko OA, Ermakov DYu, Lebedev MU, Yakovlev VA, Parmon VN (2010) Guaiacol hydrodeoxygenation in the presence of Ni-containing catalysts. Catal Ind 5:45–52Google Scholar
  5. Bykova MV, Ermakov DYu, Khromova SA, Smirnov AA, Lebedev MYu, Yakovlev VA (2014) Stabilized Ni-based catalysts for bio-oil hydrotreatment: reactivity studies using guaiacol. Catal Today 220–222:21–31CrossRefGoogle Scholar
  6. Cherubini F, Jungmier G, Wellish M, Willke T, Skiadas I, van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefining 172:534–546CrossRefGoogle Scholar
  7. Clark JH, Deswarte FEI (eds) (2008) Introduction to chemicals from biomass. Wiley, ChichesterGoogle Scholar
  8. de Long E, Hidson A, Walsh P (2013) Task 42. Biorefinery. Report International Energy Agency BioenergyGoogle Scholar
  9. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  10. Gaspar AR, Gamelas JAF, Evtuguin D, Neto CP (2007) Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem 9:717–730CrossRefGoogle Scholar
  11. Gromov NV, Taran OP, Sorokina KN, Mishchenko TI, Uthandi S, Parmon VN (2016) New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: methods for biomass activation. Catal Ind 8:176–186CrossRefGoogle Scholar
  12. Heitner C, Dimmel D, Schmidt J (2010) Lignin and lignans: advances in chemistry. CRC Press, Boca RatonCrossRefGoogle Scholar
  13. Hu F, Jung S, Radauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRefPubMedGoogle Scholar
  14. Huang H, Guo X, Li D, Liu M, Wu J, Ren H (2011) Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol 102:7486–7493CrossRefPubMedGoogle Scholar
  15. Huang X, Koranyi TI, Boot MD, Hensen EJM (2014) Catalytic depolymerization of lignin in supercritical ethanol. ChemSusChem 7:2276–2288CrossRefPubMedGoogle Scholar
  16. Kim JY, Park J, Hwang H, Kim JK, Song K, Choi JW (2015) Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. J Anal Appl Pyrol 113:99–106CrossRefGoogle Scholar
  17. Kuznetsov BN, Tarabanko VE, Kuznetsova SA (2008a) New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet Catal 49:517–526CrossRefGoogle Scholar
  18. Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV (2008b) Catalytic properties of TiO2 in wood delignification by acetic acid–hydrogen peroxide mixture. React Kinet Catal Lett 94:311–317CrossRefGoogle Scholar
  19. Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2013a) Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under the mild conditions. React Kinet Mech Catal 110:271–280CrossRefGoogle Scholar
  20. Kuznetsov BN, Sharypov VI, Grishechko LI, Celzard A (2013b) Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinet Catal 54:344–352CrossRefGoogle Scholar
  21. Kuznetsov BN, Sharypov VI, Chesnokov NV, Beregovtsova NG, Baryshnikov SV, Lavrenov AV, Vosmerikov AV, Agabekov VE (2015) Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet Catal 56:434–441CrossRefGoogle Scholar
  22. Liu D, Chen EY-X (2014) Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal 4:302–1310CrossRefGoogle Scholar
  23. Ma R, Hao W, Ma X, Tian Y, Li Y (2014) Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem Int Ed 53:7310–7315CrossRefGoogle Scholar
  24. Maki-Arvela P, Holbom B, Salmi T, Murzin DYu (2007) Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal Rev 49:197–340CrossRefGoogle Scholar
  25. Nelson V (2011) Introduction to renewable energy. CRC Press, LondonGoogle Scholar
  26. Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on integrating cellulose performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentralGoogle Scholar
  27. Raveendran SN, Guliants V (2009) Recent developments in catalysis using nanostructured materials. Appl Catal A 356:1–17CrossRefGoogle Scholar
  28. Schutyser W, den Bosch Van, Renders T, De Boe T, Koelewijn S-F, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin CM, Sels BF (2015) Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chem 17:5035–5045CrossRefGoogle Scholar
  29. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99CrossRefGoogle Scholar
  30. Sharypov VI, Kuznetsov BN, Yakovlev VA, Beregovtsova NG, Baryshnikov SV, Djakovitch L, Pinel C (2015) Composition of liquid products of acetonlignin conversion over NiCu/SiO2 catalysts in supercritical butanol. J Sib Fed Univ Chem 8:465–475CrossRefGoogle Scholar
  31. Sixta H (2006) Handbook of pulp. Wiley-VCH Verlag GmbH & Co, WeinheimCrossRefGoogle Scholar
  32. Sjöström E, Alén R (eds) (1999) Analytical methods of wood chemistry. Pulping and papermaking. Springer, BerlinGoogle Scholar
  33. Suchy M, Argyropoulos D (2001) Catalysis and activation of oxygen and peroxide delignification of chemical pulp: a review. ACS Symp Ser 785:2–43CrossRefGoogle Scholar
  34. Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:472–499Google Scholar
  35. Toshio O (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666CrossRefGoogle Scholar
  36. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:2–99Google Scholar
  37. Van den Bosch S, Schutyser W, Vanholme R, Drissen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748–1763CrossRefGoogle Scholar
  38. Xu J, Xie X, Wang J, Jiang J (2016) Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem 18:3124–3138CrossRefGoogle Scholar
  39. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefPubMedGoogle Scholar
  40. Zha Y, Muilwijk B, Coulier L, Punt PJ (2012) Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes. J Bioprocess Biotech 2:112–122CrossRefGoogle Scholar
  41. Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 14:22–38CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 3:51–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • B. N. Kuznetsov
    • 1
    • 2
    Email author
  • N. V. Chesnokov
    • 1
    • 2
  • O. V. Yatsenkova
    • 1
  • V. I. Sharypov
    • 1
  • N. V. Garyntseva
    • 1
  • N. M. Ivanchenko
    • 1
  • V. A. Yakovlev
    • 3
  1. 1.Institute of Chemistry and Chemical Technology SB RASFederal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations