Wood Science and Technology

, Volume 50, Issue 4, pp 845–880 | Cite as

Wood quality in complex forests versus even-aged monocultures: review and perspectives

  • Hans PretzschEmail author
  • Andreas Rais


As they fulfil many ecological and social functions and services better than even-aged monocultures, heterogeneous pure and mixed-species stands are on the advance in Central Europe. Even so, knowledge of how different stands compare in terms of the quantity and quality of the produced wood remains limited, as forest research has been focused on pure stands in the past. Therefore, the still limited comparative studies on timber quality in mixed versus pure stands were reviewed. Further, approximately 100 studies on the morphology of mixed versus pure stands have been reviewed. As is known, the close connection between morphology and timber quality from many studies in pure stands as well as the morphological and structural properties of trees in mixed stands is used as proxies for their timber quality. The number of studies reporting a decrease or increase in timber strength and stiffness in complex stands compared with homogeneous stands was balanced. Knottiness is mostly higher in complex stands. Wood density behaves indifferently. Distortion, as indicated by eccentricity of crown, bending of stems, or irregularity of the tree-ring width, is generally higher in complex forests. This rather ambiguous pattern becomes clearer by typifying the findings depending on the species-specific morphological plasticity of the trees and the spatial conditions they are exposed to. When growing in strong lateral restriction in even-aged pure or mixed-species stands (type 1), trees follow a “keep abreast” strategy which results in high-quality timber especially in case of species with low plasticity. Trees in uneven-aged forests with vertically restricted growing space (type 2) often use a “sit-and-wait” strategy that may result in tapering stem shapes, wide and long crowns with low branch diameters, and high wood density. Distortion may be low in case of species with low morphological plasticity but increase with increasing shade tolerance and plasticity. Growth in widely spaced and heavily thinned pure and mixed stands (type 3) may let trees follow the “stabilisation” strategy. Because of their strong dominance, these trees develop tapering stem shapes, knots of big size and wide appearance along the stem axis, as well as lower wood density, especially in the case of conifers. In arrangements of types 1–3, the “transition” strategy may also emerge, which leads from the “sit-and-wait” stadium to the “keep abreast” strategy. It starts when trees strongly increase their height growth at the expense of the stem diameter growth. It results in slender stems, low knottiness, high wood density, and low distortion, with the result that the tree gets access to the upper canopy at the expense of lateral expansion of stem and crown. In fact, it is not primarily the species mixing that modifies the morphology, structure, and wood quality of the trees but the species-specific morphological plasticity and the structural heterogeneity of the stand. The latter is often higher in mixed than in pure stands and in uneven-aged than in even-aged stands. The more variable the stand structure, the wider the range of wood attributes. The discussion is focused on the relevance of the results for stand management and interdisciplinary research at the intersection of forest growth and yield science and wood science.


Timber Wood Density Mixed Stand Pure Stand European Beech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Bavarian State Ministry for Nutrition, Agriculture, and Forestry for its support of project X36, “Relationship between spacing and wood quality of Douglas-fir in Bavaria”, and the German Science Foundation (Deutsche Forschungsgemeinschaft) for providing the funds for project PR 292/12-1, “Tree and stand-level growth reactions to drought in mixed versus pure forests of Norway spruce and European beech”. C. T. Bues, P. Comeau, F. Hapla, S. Hein, H. Spellmann, A. Mäkelä, A. Nepveu, R. Schneider, J. P. Schütz, T. Seifert, C. H. Ung, and A. Weiskittel supported this study by valuable suggestions, overview of literature, or supply of publications. Thanks are also due to Gerhard Schütze for supporting the statistical analysis, Ulrich Kern for the graphical artwork, and two anonymous reviewers for their constructive criticism.

Supplementary material

226_2016_827_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)


  1. Agestam E, Karlsson M, Nilsson U (2006) Mixed forests as a part of sustainable forestry in Southern Sweden. J Sustain For 21(2–3):101–117CrossRefGoogle Scholar
  2. Assmann E (1970) The principles of forest yield study. Pergamon Press, OxfordGoogle Scholar
  3. Auty D, Achim A, Macdonald E, Cameron AD, Gardiner BA (2014) Models for predicting wood density variation in Scots pine. Forestry 87(3):449–458CrossRefGoogle Scholar
  4. Bacher M, Krzosek S (2014) Bending and tension strength classes in European standards. Ann Wars, Univ Life Sci, For Wood Technol 88:14–22Google Scholar
  5. Baldwin VC Jr, Peterson KD, Clark A III, Ferguson RB, Strub MR, Bower DR (2000) The effects of spacing and thinning on stand and tree characteristics of 38-year-old loblolly pine. For Ecol Manag 137:91–102CrossRefGoogle Scholar
  6. Bäucker E, Schröder J, Mittenzwey M (2010) Holzqualität in Trauben-Eichen-Kiefern-Mischbeständen. (Wood quality of sessile oaks in mixed oak-pine stands) (In German). AFZ-DerWald 4:9–12Google Scholar
  7. Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.] in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27(4):1035–1047CrossRefGoogle Scholar
  8. Beall FC (2007) Industrial applications and opportunities for nondestructive evaluation of structural wood members. Maderas Ciencia Y Tecnología 9(2):127–134Google Scholar
  9. Bergqvist G (1999) Wood volume yield and stand structure in Norway spruce understorey depending on birch shelterwood density. For Ecol Manag 122(3):221–229CrossRefGoogle Scholar
  10. Bernhart A (1964) Über die Rohdichte von Fichtenholz (On the specific gravity of the wood of Norway spruce (Picea abies (L.) Karst.) (In German). Holz Roh- Werkst 22(6):215–228CrossRefGoogle Scholar
  11. Bleile K (2006) Vorkommen und Analyse von Zugholz bei Buche (Fagus sylvatica L.) als Ursache von Spannungen im Rundholz und Verwerfungen des Schnittholzes (Tension wood causing tensions within round wood and distortion of sawn timber—occurrence and analysis of reaction for beech) (In German). Dissertation, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  12. Brazier JD (1977) The effect of forest practices on quality of the harvested crop. Forestry 50(1):49–66CrossRefGoogle Scholar
  13. Briggs DG, Fight RD (1992) Assessing the effects of silvicultural practices on product quality and value of coast Douglas-fir trees. For Prod J 42(1):40–46Google Scholar
  14. Brown AHF (1992) Functioning of mixed-species stands at Gisburn, N.W. England. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell, Oxford, pp 125–150Google Scholar
  15. Brüchert F, Becker G, Speck T (2000) The mechanics of Norway spruce [Picea abies (L.) Karst]: mechanical properties of standing trees from different thinning regimes. For Ecol Manag 135(1–3):45–62CrossRefGoogle Scholar
  16. Bücking M, Moshammer R, Roeder A (2007) Wertholzproduktion bei der Fichte mittels kronenspannungsarm gewachsener Z-Bäume (Producing high quality timber of Norway spruce future crop trees) (In German). Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz No. 62/07Google Scholar
  17. Bues CT (1985) Der Einfluß von Bestockungsgrad und Durchforstung auf die Rohdichte von südafrikanischer Pinus radiata (The influence of stand density and thinning on the wood density of South African radiata pine) (In German). Holz Roh Werkst 43:69–73CrossRefGoogle Scholar
  18. Burger H (1941) Beitrag zur Frage der reinen oder gemischten Bestände. (Contribution to the question of pure versus mixed-species stands) (In German). Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen Zürich 22(1):164–203Google Scholar
  19. Cameron A, Watson B (1999) Effect of nursing mixtures on stem form, crown size, branching habit and wood properties of Sitka spruce (Picea sitchensis (Bong.) Carr.). For Ecol Manag 122(1–2):113–124CrossRefGoogle Scholar
  20. Colin F, Houllier F (1991) Branchiness of Norway spruce in north-eastern France: modelling vertical trends in maximum nodal branch size. Ann For Sci 48:679–693CrossRefGoogle Scholar
  21. Curtis RO, Reukema DL (1970) Crown development and site estimates in a Douglas-fir planatation spacing test. For Sci 16:287–301Google Scholar
  22. Deleuze C, Hervé JC, Colin F, Ribeyrolles L (1996) Modelling crown shape of Picea abies: spacing effects. Can J For Res 26:1957–1966CrossRefGoogle Scholar
  23. Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manag 295:97–108CrossRefGoogle Scholar
  24. DiLucca CM (1999) TASS/SYLVER/TIPSY: systems for predicting the impact of silvicultural practices on yield, lumber value, economic return and other benefits. In: Stand density management conference: using the planning tools, 7–13, November 23–24, 1998, Clear Lake Ltd., EdmontonGoogle Scholar
  25. DIN 4074–1 (2012) Strength grading of wood—coniferous sawn timber. DIN, BerlinGoogle Scholar
  26. Dippel M (1982) Auswertung eines Nelder-Pflanzverbandsversuches mit Kiefer im Forstamt Walsrode (Analysis of a Nelder spacing wheel experiment design of Scots pine in the forestry district Walsrode) (In German). Allgemeine Forst- und Jagdzeitung 153:137–154Google Scholar
  27. Dippel M (1988) Wuchsleistung und Konkurrenz von Buchen/Lärchen-Mischbeständen im südniedersächsischen Bergland (Growth performance and competition in mixed stands of beech and larch in Lower Saxony) (In German). Dissertation, Georg-August-Universität Göttingen, pp 139–145Google Scholar
  28. Dittmar O (1990) Ein Vergleich zwischen dem Buchen-Plenterwald Keula und dem gleichaltrigen Buchenhochwald anhand langfristiger Versuchsflächen (Two silvicultural management systems for beech compared by long-term experimental plots: “Plenterwald” near Keula and the even-aged forest) (In German). DVVFA Jahrestagung, pp 130–146Google Scholar
  29. Erickson HE, Harrington CA, Marshall DD (2009) Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State USA. Can J For Res 39(6):1119–1132. doi: 10.1139/X09-040 CrossRefGoogle Scholar
  30. Erviti MV, Erviti JJ (1994) Beech (Fagus sylvatica L.)—silver fir (Abies alba Mill.) natural dynamics in the western Pyrenees. In: Preuhsler T (ed). Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, Lisboa Codex, Portugal, p 1399Google Scholar
  31. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292CrossRefGoogle Scholar
  32. Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340PubMedPubMedCentralCrossRefGoogle Scholar
  33. Genet A, Auty D, Achim A, Bernier M, Pothier D (2012) Consequences of faster growth for wood density in northern red oak (Quercus rubra Liebl.). Forestry 86(1):99–110CrossRefGoogle Scholar
  34. Glos P, Tratzmiller M (1997) Qualität von Schnittholz bayerischer Fichten aus Lichtwuchsbetrieb im Vergleich zu Schnittholz aus Beständen mit niederdurchforstungsartiger Behandlung (Sawn timber quality of Norway spruce grown in Bavaria: “Lichtwuchsbetrieb” versus thinning from below) (In German) Final report 96511 Der Bayerischen Landesanstalt Für Wald Und Forstwirtschaft Zum Kuratoriumsprojekt X31:1–74Google Scholar
  35. Goulding CJ (1994) Development of growth models for Pinus radiata in New Zealand—experience with management and process models. For Ecol Manag 69:331–343CrossRefGoogle Scholar
  36. Grace JC, Pont D (1999) Modelling branch development in radiata pine. In: Amaro A, Tomé M (eds) Empirical and process-based models for forest tree and stand growth simulation. Ediçoes Salamandra, Lisboa, pp 173–184Google Scholar
  37. Grammel R (1990) Zusammenhänge zwischen Wachstumsbedingungen und holztechnologischen Eigenschaften der Fichte (Relationship between growth conditions and wood properties of Norway spruce) (In German). Forstwiss Centralbl 109:119–129CrossRefGoogle Scholar
  38. Guericke M (2001) Untersuchungen zur Wuchsdynamik von Mischbeständen aus Buche und Europ. Lärche (Larix decidua, Mill.) als Grundlage für ein abstandsabhängiges Einzelbaumwachstumsmodell (Growth performance and competition in mixed stands of beech and larch in Lower Saxony) (In German). Dissertation, Georg-August-Universität, GöttingenGoogle Scholar
  39. Guilley É, Hervé J-C, Huber F, Nepveu G (1999) Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density. Ann For Sci 56(6):449–458CrossRefGoogle Scholar
  40. Hakkila P (1989) Utilization of residual forest biomass. Springer, HeidelbergCrossRefGoogle Scholar
  41. Hanhijärvi A, Ranta-Maunus A (2008) Development of strength grading of timber using combined measurement techniques. Report of the Combigrade-project—phase 2. VTT Publications 686:55Google Scholar
  42. Hann DW, Hester AS, Olsen CL (1997) ORGANON user’s manual, version 6.0. Department of Forest Resources, Oregon State University, Corvallis. Department of Forest Resources, Oregon State University, CorvallisGoogle Scholar
  43. Hapla F (1982) Wie beeinflußt der Pflanzverband die Holzeigenschaften der Douglasie? (How do planting patterns influence wood properties of Douglas-fir?) (In German). Holz-Zentralblatt 108:574–576Google Scholar
  44. Hapla F (1985) Radiographisch-densitometrische Holzeigenschaftsuntersuchungen an Douglasien aus unterschiedlich durchforsteten Versuchsflächen (Investigations on properties of Douglas-fir in differently thinned experimental areas by X-ray densitometric method) (In German). Holz Roh Werkst 43:9–15CrossRefGoogle Scholar
  45. Harrington TB, Harrington CA, DeBell DS (2009) Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). For Ecol Manag 258(1):18–25CrossRefGoogle Scholar
  46. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190PubMedCrossRefGoogle Scholar
  47. Hein S, Weiskittel AR, Kohnle U (2009) Models on branch characteristics of wide-spaced Douglas-fir. In: Dykstra DP, Monserud RA (eds) Forest growth and timber quality: crown models and simulation methods for sustainable forest management. Proceedings of an international conference. Gen. Tech. Rep. PNW-GTR-791:23–33. Portland, Oregon: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research StationGoogle Scholar
  48. Houllier F, Leban J-M, Colin F (1995) Linking growth modelling to timber quality assessment for Norway spruce. For Ecol Manag 74(1–3):91–102CrossRefGoogle Scholar
  49. Hynynen J (1995) Predicting tree crown ratio for unthinned and thinned Scots pine stands. Can J For Res 25:57–62CrossRefGoogle Scholar
  50. Ikonen VP, Kellomäki S, Peltola H (2009) Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: a simulation based approach. Silva Fennica 43(3):411–431CrossRefGoogle Scholar
  51. Johansson T (2003) Mixed stands in Nordic countries—a challenge for the future. Biomass Bioenergy 24(4–5):365–372CrossRefGoogle Scholar
  52. Jonsson B (2001) Volume yield to mid-rotation in pure and mixed sown stands of Pinus sylvestris and Picea abies in Sweden. Stud For Suec 211:19Google Scholar
  53. Kantola A, Mäkelä A (2004) Crown development in Norway spruce [Picea abies (L.) Karst.]. Trees 18:408–421CrossRefGoogle Scholar
  54. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141CrossRefGoogle Scholar
  55. Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand (Growth potential of Norway spruce and European beech in pure and mixed stands) (in German). Allg Forst Jagdztg 136(8):173–189Google Scholar
  56. Kern G (1966) Wachstum und Umweltfaktoren im Schlag- und Plenterwald (Growth and environmental factors of a selection forest) (in German). Bayerischer Landwirtschaftsverlag, München Basel Wien, p 232Google Scholar
  57. Kijidani Y, Hamazuna T, Ito S, Kitahara R, Fukuchi S, Mizoue N, Yoshida S (2009) Effect of height-to-diameter ratio on stem stiffness of sugi (Cryptomeria japonica) cultivars. J Wood Sci 56(1):1–6CrossRefGoogle Scholar
  58. Klang F, Ekö PM (1999) Tree properties and yield of Picea abies planted in shelterwoods. Scand J For Res 14(3):262–269CrossRefGoogle Scholar
  59. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model 210(4):487–498CrossRefGoogle Scholar
  60. Körner C (2005) An introduction to the functional diversity of temperate forest trees. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function, ecological studies, vol 176. Springer, Heidelberg, pp 13–37CrossRefGoogle Scholar
  61. Kramer H (1988) Waldwachstumslehre (Forest growth and yield science) (In German) Paul Parey. Hamburg, Berlin, p 374Google Scholar
  62. Krempl H (1977) Gewicht des Fichtenholzes in Österreich (Wood density of Norway spruce in Austria) (In German). Allgemeine Forstzeitung 88:76–81Google Scholar
  63. Kuprevicius A, Auty D, Achim A, Caspersen JP (2013) Quantifying the influence of live crown ratio on the mechanical properties of clear wood. Forestry 86(3):361–369CrossRefGoogle Scholar
  64. Larson PR (1962) A biological approach to wood quality. Tappi 45:443–448Google Scholar
  65. Lasserre JP, Mason EG, Watt MS, Moore JR (2009) Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For Ecol Manag 258(9):1924–1931CrossRefGoogle Scholar
  66. Le Maire G, Nouvellon Y, Christina M, Ponzoni FJ, Gonçalves JLM, Bouillet JP, Laclau JP (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42CrossRefGoogle Scholar
  67. Leban JM, Daquitaine, Houllier F, Saint André L (1996) Linking models for tree growth and wood quality in Norway spruce. Part 1: validations of predictions for sawn properties, ring width, wood density and knotiness. In: Nepveu G (ed) Connection between silviculture and wood quality through modelling approaches and simulation software, IUFRO WP S5.01-04 Workshop (Berg-en-Dal, South Africa, August 1996), pp 220–228Google Scholar
  68. Lenz P, Bernier-Cardou M, MacKay J, Beaulieu J (2012) Can wood properties be predicted from the morphological traits of a tree? A canonical correlation study of plantation-grown white spruce. Can J For Res 42(8):1518–1529CrossRefGoogle Scholar
  69. Lindén M, Agestam E (2003) Increment and yield in mixed and monoculture stands of Pinus sylvestris and Picea abies based on an experiment in Southern Sweden. Scand J For Res 18(2):155–162CrossRefGoogle Scholar
  70. Lindström H, Reale M, Grekin M (2009) Using non-destructive testing to assess modulus of elasticity of Pinus sylvestris trees. Scand J For Res 24(3):247–257CrossRefGoogle Scholar
  71. Longuetaud F, Seifert Th, Leban JM, Pretzsch H (2008) Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. For Ecol Manag 255:2007–2019CrossRefGoogle Scholar
  72. Lutz W (1979) Kronendimensionen und Zuwachsleistung in Traubeneichenbeständen der Rheinpfalz (Crown dimensions and growth in sessile oak stands of Rhineland-Palatinate) (In German). Diplomarbeit Ludwig-Maximilians-Universität, MünchenGoogle Scholar
  73. Magin R (1959) Struktur und Leistung mehrschichtiger Mischwälder in den bayerischen Alpen (Structure and growth of multi-storied mixed stands in the Bavarian Alps) (In German). Mitt Staatsforstverwaltung Bayerns 30:161Google Scholar
  74. Maguire DA, Kershaw JA, Hann DW (1991) Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir. For Sci 37(5):1409–1428Google Scholar
  75. Maguire DA, Johnston SR, Cahill J (1999) Predicting branch diameters on second-growth Douglas-fir from tree-level descriptors. Can J For Res 29(12):1829–1840CrossRefGoogle Scholar
  76. Mäkelä A (1997) A carbon balance model of growth and self-pruning in trees based on structural relationships. For Sci 43(1):7–24Google Scholar
  77. Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905PubMedCrossRefGoogle Scholar
  78. Mäkelä A, Mäkinen H (2003) Generating 3D sawlogs with a process-based growth model. For Ecol Manag 184(1–3):337–354CrossRefGoogle Scholar
  79. Mäkelä A, Grace JC, Deckmyn G, Kantola A, Campioli M (2010) Simulating wood quality in forest management models. For Syst 19:48–68Google Scholar
  80. Man R, Lieffers VJ (1999) Are mixtures of aspen and white spruce more productive than single species stands? For Chron 75(3):505–513CrossRefGoogle Scholar
  81. Mantel W (1961) Wald und Forst. Wechselbeziehungen zwischen Natur und Wirtschaft (Forest and Forestry. Interrelationship between nature and economy) (In German). Rowohlts deutsche Enzyklopädie, Rowohlt, HamburgGoogle Scholar
  82. Mason WL, Baldwin E (1995) Performance of pedunculate oak after 40 years in mixture with European larch and Norway spruce in Southern Scotland. Scott For 49(1):5–13Google Scholar
  83. Maurer E (1963) Waldbauliche und holzkundliche Untersuchungen an Eschen aus dem Allgäu (Silviculture and wood technology of ashes from the Allgäu) (In German). Aus dem Waldbauinstitut und dem Institut für biologische Holzkunde und Forstnutzung der Forstlichen Forschungsanstalt München, pp 162–188Google Scholar
  84. Medhurst JL, Beadle CL (2001) Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiol 21:989–999PubMedCrossRefGoogle Scholar
  85. Metzger ML (1998) Qualitätseigenschaften des Holzes von Traubeneichen (Quercus petreae Liebl.) aus drei süddeutschen Beständen in Abhängigkeit von der Jahrringbreite (Wood properties of sessile oak from South Germany and their dependency on year ring width) (In German). Dissertation, Albert-Ludwig-Universität Freiburg, Schriftenreihe Agrarwissenschaftliche Forschungsergebnisse Volume 16Google Scholar
  86. Mitchell KJ (1975) Dynamics and simulated yield of Douglas-fir. For Sci 21(4):1–39Google Scholar
  87. Mitchell KJ (1988) SYLVER: modelling the impact of silviculture on yield, lumber value, and economic return. For Chron 64(2):127–131CrossRefGoogle Scholar
  88. Mitchell KJ, Cameron IR (1985) Managed stand yield tables for coastal Douglas-fir: initial density and precommercial thinning. Land Management Report 31. British Columbia Ministry of Forests Research Branch, VictoriaGoogle Scholar
  89. Moore J, Achim A, Lyon A, Mochan S, Gardiner B (2009) Effects of early re-spacing on the physical and mechanical properties of Sitka spruce structural timber. For Ecol Manag 258(7):1174–1180CrossRefGoogle Scholar
  90. Moore J, Lyon A, Searles G, Lehneke S, Ridley-Ellis DJ (2013) Within- and between-stand variation in selected properties of Sitka spruce sawn timber in the UK: implications for segregation and grade recovery. Ann For Sci 70(4):403–415CrossRefGoogle Scholar
  91. Newnham RM (1964) The development of a stand model for Douglas fir. PhD thesis, University of British Columbia, VancouverGoogle Scholar
  92. Øvrum A (2013) In-forest assessment of timber stiffness in Norway spruce (Picea abies (L.) Karst.). Eur J Wood Wood Prod 71(4):429–435CrossRefGoogle Scholar
  93. Petri H (1966) Versuch einer standortgerechten, waldbaulichen und wirtschaftlichen Standraumregelung von Buchen-Fichten-Mischbeständen (What is the right growing space for mixed stands of beech and Norway spruce in terms of growing space, silviculture and economics?) (In German). Mitt Landesforstverwaltung Rheinland-Pfalz 13:67–70Google Scholar
  94. Piispanen R, Heinonen J, Valkonen S, Mäkinen H, Lundqvist SO, Saranpää P (2014) Wood density of Norway spruce in uneven-aged stands. Can J For Res 44(2):136–144CrossRefGoogle Scholar
  95. Pinkard EA, Neilsen WA (2001) Crown and stand characteristics of Eucalyptus nitens in response to initial spacing: implicataions for thinning. For Ecol Manag 172:215–227CrossRefGoogle Scholar
  96. Poschenrieder W, Rais A, Van de Kuilen JWG, Pretzsch H (2016) Modelling sawn timber volume and strength development at the individual tree level—essential model features by the example of Douglas fir. Silva Fennica 50(1):1–25CrossRefGoogle Scholar
  97. Pretzsch H (1985) Die Fichten-Tannen-Buchen-Plenterwaldversuche in den ostbayerischen Forstämtern Freyung und Bodenmais (The experimental trials of selection forests of Norway spruce, silver fir and European beech in the Bavarian forest estates Freyung and Bodenmais) (In German). Forstarchiv 56(1):3–9Google Scholar
  98. Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Heidelberg, p 664Google Scholar
  99. Pretzsch H (2010) Forest dynamics, growth and yield. Springer, Heidelberg, p 664CrossRefGoogle Scholar
  100. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–261CrossRefGoogle Scholar
  101. Pretzsch H, Spellmann H (1994) Leistung und Struktur des Douglasien-Durchforstungsversuchs Lonau 135—waldwachstumskundliche Ergebnisse nach fast 90jähriger Beobachtung(Growth performance and structure of the Douglas-fir thinning experiment Lonau 135—forest growth results after nearly 90 years of observation) (In German). Forst und Holz 49:54–69Google Scholar
  102. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15(3):483–495PubMedCrossRefGoogle Scholar
  103. Pretzsch H, Forrester DI, Rötzer Th (2015) Representation of species mixing in forest growth models. A Rev Perspect. Ecol model 313:276–292CrossRefGoogle Scholar
  104. Preuhsler T (1979) Ertragskundliche Merkmale oberbayerischer Bergmischwald-Verjüngungsbestände auf kalkalpinen Standorten im Forstamt Kreuth (Forest yield characteristics of regeneration mixed stands in the Bavarian mountains on limestone sites in the forest estate Kreuth) (In German). Forstl Forschungsber München 45:372Google Scholar
  105. Puettmann K, Coates D, Messier C (2009) A critique of silviculture: managing for complexity. Island Press, Washington, p 200Google Scholar
  106. Purves DW, Lichstein JW, Pacala SW (2007) Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLoS One 9:e870CrossRefGoogle Scholar
  107. Putz FE, Parker GG, Archibald RM (1984) Mechanical abrasion and intercrown spacing. Am Midl Nat 112(1):24CrossRefGoogle Scholar
  108. Rais A (2015) Growth and wood quality of Douglas-fir. Doctoral thesis, Technische Universität München, München, 122pGoogle Scholar
  109. Rais A, Van de Kuilen JWG (2015) Critical section effect during derivation of settings for grading machines based on dynamic modulus of elasticity. Wood Mat Sci Eng. doi: 10.1080/17480272.2015.1109546 Google Scholar
  110. Rais A, Poschenrieder W, Pretzsch H, Van de Kuilen JWG (2014) Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 71(5):617–626Google Scholar
  111. Rametsteiner E, Mayer P (2004) Sustainable forest management and Pan: European forest policy. Ecol Bull 51:51–57Google Scholar
  112. Reukema DL, Smith JHG (1987) Development over 25 years of Douglas-fir, western hemlock, and western red cedar planted at various spacings on a very good site in British Columbia. USDA For Serv Res Pap PNW-RP- 381:46Google Scholar
  113. Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16(1):166–176PubMedCrossRefGoogle Scholar
  114. Río M, Pretzsch H, Alberdi I, Bielak K, Bravo F, Brunner A, Condés S, Ducey MJ, Fonseca T, von Lüpke N, Pach M, Peric S, Perot T, Souidi Z, Spathelf P, Sterba H, Tijardovic M, Tomé M, Vallet P, Bravo-Oviedo A (2016) Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur J For Res 135:23–49CrossRefGoogle Scholar
  115. Roth BE, Li X, Huber DA, Peter GF (2007) Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA. For Ecol Manag 246(2–3):155–162CrossRefGoogle Scholar
  116. Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald (Influence of tree species proportion on root penetration, water balance, resource balance and increment of mixed stand of Norway spruce and European beech in the Höglwald) (In German). Forstliche Forschungsberichte, München 136:174Google Scholar
  117. Sachsse H, Grünebaum M (1990) Untersuchung der Holzqualität von Traubeneichen aus unterschiedlich dicht begründeten Beständen (Investigation about the effect of the formation of stands to structural wood properties of Quercus petraea and her suitability for veneer production) (In German). Holz Roh Werkst 48:255–260Google Scholar
  118. Saha S, Kuehne C, Kohnle U, Brang P, Ehring A, Geisel J, Leder B, Muth M, Petersen R, Peter J, Ruhm W, Bauhus J (2012) Growth and quality of young oaks (Quercus robur and Quercus petraea) grown in cluster plantings in central Europe: a weighted meta-analysis. For Ecol Manag 283:106–118CrossRefGoogle Scholar
  119. Sattler DF, Comeau PG, Achim A (2014) Within-tree patterns of wood stiffness for white spruce (Picea glauca) and trembling aspen (Populus tremuloides). Can J For Res 44(2):162–171CrossRefGoogle Scholar
  120. Schumacher P, Tratzmiller P, Glos P, Wegener G (1997) Vergleich der Qualitäten von nordischem und bayerischem Fichtenschnittholz aus unterschiedlichem Rundholz (Comparison of Norway spruce sawn timber from different regions: Nordic versus Bavarian wood) (In German). Holz-Zentralblatt 28:427Google Scholar
  121. Schütz JP (1997) Sylviculture 2. La gestion des forêts irrégulières et mélangées. (Sylviculture 2. Management of uneven-aged and mixed forests) (In French). Presses Polytechniques et Universitaires Romandes, Lausanne, 178 pGoogle Scholar
  122. Searles GJ (2012) Acoustic segregation and structural timber production. PhD thesis, Edinburgh Napier University, EdinburghGoogle Scholar
  123. Seeling U (2001) Transformation of plantation forests—expected wood properties of Norway spruce (Picea abies (L.) Karst.) within the period of stand stabilisation. For Ecol Manag 151(1–3):195–210CrossRefGoogle Scholar
  124. Seifert T (2003) Integration von Holzqualität und Holzsortierung in behandlungssensitive Waldwachstumsmodelle (Integration of wood quality, grading and bucking in forest growth models sensitive to silvicultural treatment) (In German). Dissertation, Technische Universität MünchenGoogle Scholar
  125. Seifert T (2004) Einfluss der waldbaulichen Behandlung auf die Holzqualität von Fichte und Buche in Rein- und Mischbeständen (Impact of silvicultural treatment on wood quality of Norway spruce and European beech in pure and mixed stands) (In German). Final report of the project X 33, Part II, Chair for Forest Growth and Yield Science, Technische Universität München, GermanyGoogle Scholar
  126. Spellmann H, Nagel J (1992) 2. Auswertung des Nelder-Pflanzverbandsversuches mit Kiefer im Forstamt Walsrode (2. Analysis of a Nelder spacing wheel experiment design of Scots pine in the forestry district Walsrode) (In German). Berichte von der Jahrestagung der Sektion Ertragskunde 1992 in Grillenburg/Sachsen, Deutscher Verband Forstlicher Forschungsanstalten, 149–161Google Scholar
  127. Stapel P, Van de Kuilen JWG (2013) Influence of cross-section and knot assessment on the strength of visually graded Norway spruce. Eur J Wood Wood Prod 72(2):213–227CrossRefGoogle Scholar
  128. Strobel GW (1995) Rottenstruktur und Konkurrenz im subalpinen Fichtenwald—eine modellhafte Betrachtung (Structure and competition in subalpine Norway spruce forests—a model-based view) (In German). Dissertation, ETH Zürich Nr. 11292, p. 162 + referencesGoogle Scholar
  129. Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93(10):1466–1476PubMedCrossRefGoogle Scholar
  130. Tham Å (1988) Yield prediction after heavy thinning of birch in mixed stands of Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth & Betula pubescens Ehrh.). Dissertation, Swedish University of Agricultural SciencesGoogle Scholar
  131. Thorpe HC, Astrup R, Trowbridge A, Coates KD (2010) Competition and tree crowns: a neighbourhood analysis of three boreal tree species. For Ecol Manag 259:1587–1596CrossRefGoogle Scholar
  132. Torquato LP, Auty D, Hernández RE, Duchesne I, Pothier D, Achim A (2014) Black spruce trees from fire-origin stands have higher wood mechanical properties than those from older, irregular stands. Can J For Res 44(2):118–127CrossRefGoogle Scholar
  133. Uhl E, Biber P, Ulbricht M, Heym M, Horváth T, Lakatos F, Gál J, Steinacker L, Tonon G, Ventura M, Pretzsch H (2015) Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results. For Ecosyst 2(1):17CrossRefGoogle Scholar
  134. Utschig H (2000) Wachstum vorherrschender Buchen in Abhängigkeit von Standort und Behandlung (Growth reactions of dominant beech trees in relation to site condition and thinning regime). Forst und Holz 55:44–50Google Scholar
  135. Van Miegroet M (1956) Untersuchungen über den Einfluss der waldbaulichen Behandlung und der Umweltfaktoren auf den Aufbau und die morphologischen Eigenschaften von Eschendickungen im schweizerischen Mittelland(Investigating the influence of silvicultural treatment and environmental factors on the establishment and the morphological characteristics of young ash forests in Swiss) (In German). Dissertation, ETH ZürichGoogle Scholar
  136. von Pechmann H (1954) Untersuchungen über Gebirgsfichtenholz (Studying Norway spruce wood from the mountains) (In German). Forstwiss Centralbl 73:65–91CrossRefGoogle Scholar
  137. von Lüpke B, Spellmann H, (1999) Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. In: Olsthoorn AFM, Bartelink, HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics. IBN Scientific Contributions 15:245–267Google Scholar
  138. von Pechmann H, Courtois H (1970) Untersuchungen über die Holzeigenschaften von Douglasien aus linksrheinischen Anbaugebieten (Investigations about wood properties of Douglas-fir from left Rhine areas) (in German). Forstwiss Centralbl 89(2):88–122CrossRefGoogle Scholar
  139. von Pechmann H, Aufsess H, Bernhart A (1963) Die Holzeigenschaften der Rotbuche im inneren Bayerischen Wald (Wood properties of beech from the Bavarian Forest) (In German). Institut für biologische Holzkunde und Forstnutzung der Forstlichen Forschungsanstalt München, pp 12–27Google Scholar
  140. Wang YP, Jarvis PG (1990) Description and validation of an array model-MAESTRO. Agric For Meteorol 51:257–280CrossRefGoogle Scholar
  141. Watson B, Cameron A (1995) Some effects of nursing species on stem form, branching habit and compression wood content of Sitka spruce. Scott For 49(3):146–154Google Scholar
  142. Weiskittel AR, Maguire DA, Monserud RA, Rose R, Turnblom EC (2006) Intensive management influence on Douglas fir stem form, branch characteristics, and simulated product recovery. NZ J For Sci 36(2/3):293–312Google Scholar
  143. Weiskittel AR, Maguire DA, Monserud RA (2007) Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth. For Ecol Manag 251(3):182–194CrossRefGoogle Scholar
  144. Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley, OxfordCrossRefGoogle Scholar
  145. Wessels CB (2014) The variation and prediction of structural timber properties of standing Pinus patula trees using non-destructive methods. Doctoral thesis, Stellenbosch University, South AfricaGoogle Scholar
  146. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106(17):7040–7045PubMedPubMedCentralCrossRefGoogle Scholar
  147. White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, CambridgeCrossRefGoogle Scholar
  148. Whitham TG, Bailey JK, Schweitzer JA, Schuster SM (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Genet 7:510–523CrossRefGoogle Scholar
  149. Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand (On the even-aged mixed-species stands of Norway spruce and European beech) (In German). Mitt Forstwirtsch u Forstwiss 13:1–88Google Scholar
  150. Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft (Principles of forest yield science and silviculture) (In German). JD Sauerländer‘s Verlag Frankfurt am Main, pp 61–98Google Scholar
  151. Wilson JS, Oliver CD (2000) Stability and density management in Douglas-fir plantations. Can J For Res 30(6):910–920CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  2. 2.Holzforschung München, Technische Universität MünchenMunichGermany

Personalised recommendations