Advertisement

Wood Science and Technology

, Volume 49, Issue 4, pp 825–843 | Cite as

Optimized methods for obtaining cellulose and cellulose sulfates from birch wood

  • Boris N. KuznetsovEmail author
  • Svetlana A. Kuznetsova
  • Vladimir A. Levdansky
  • Alexandr V. Levdansky
  • Natalia Yu. Vasil’eva
  • Nikolay V. Chesnokov
  • Natalia M. Ivanchenko
  • Laurent Djakovitch
  • Catherine Pinel
Original

Abstract

The methods of obtaining cellulose and cellulose sulfates from birch wood based on the use of one-step catalytic delignification of wood by hydrogen peroxide in acetic acid–water medium were studied. The conditions of birch wood oxidative delignification by acetic acid/hydrogen peroxide mixtures in the presence of sulfuric acid catalyst were optimized in order to obtain an acceptable yield of cellulose product with low content of residual lignin. Cellulose extracted from birch wood by green method was used for preparation of cellulose sulfates in dioxane solution. The homogeneous sulfation of obtained cellulose by chlorosulfonic acid in dioxane allows to reduce the fragmentation of polymer and to synthesize cellulose sulfates with a finer and more homogeneous structure as compared to cellulose sulfates prepared by heterogeneous sulfation in harmful pyridine. Obtained samples of cellulose and cellulose sulfates were characterized by XRD, SEM, AFM, NMR, FTIR, Raman, XPS and chemical methods.

Keywords

Cellulose Lignin Ionic Liquid Sulfation Residual Lignin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The reported study was partially supported by RFBR, research Project No 12-03-93117 and Ministry of Education and Science RF (Project RFMEFI607 14 X0031). This work is part of the GDRI “Catalytic biomass valorization” between France and Russia. The authors thank Dr. A.S. Romanenko, Dr. A.S. Krylov, I.V. Korolkova and V.F. Kargin for AFM, FT Raman, FT-IR, SEM analysis, respectively.

References

  1. Anderson RA, Feathergill KA, Diao XH, Cooper MD (2002) Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. J Androl 23:426–438PubMedGoogle Scholar
  2. Ardizzone S, Dioguardil F, Mussini T, Mussini P, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose 6:57–69CrossRefGoogle Scholar
  3. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMedCrossRefGoogle Scholar
  4. Browning BL (1967) Methods of wood chemistry, vol. 1, 2. Interscience Publishers, New YorkGoogle Scholar
  5. Centi G, van Santen RA (eds) (2007) Catalysis for renewables. Willey, WeinheimGoogle Scholar
  6. Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agric Food Chem 51:1932–1941PubMedCrossRefGoogle Scholar
  7. Cheng HN, Gross RA (eds) (2010) Green polymer chemistry, biocatalysis and biomaterials. ACS Symposium Series, Washington, DCGoogle Scholar
  8. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  9. Clark JH, Deswarte FEI (eds) (2008) Introduction to chemicals from biomass. Wiley, ChichesterGoogle Scholar
  10. Das S, Lachenal D, Marlin N (2013) Production of pure cellulose from Kraft pulp by a totally chlorine-free process using catalyzed hydrogen peroxide. Ind Crops Prod 49:844–850CrossRefGoogle Scholar
  11. Evtugin DV, Parcoal NC (1997) New polyoxometalate promoted method of oxygen delignification. Holzforschung 51:338–342CrossRefGoogle Scholar
  12. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reaction. Walter de Gruyter, BerlinGoogle Scholar
  13. Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1:734–737PubMedCrossRefGoogle Scholar
  14. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8—synthesis of cellulose sulfates suitable for polyelectrolyte complex. Macromol Biosci 9:343–353PubMedCrossRefGoogle Scholar
  15. Gilbert EE (1965) Sulfonation and related reactions. Interscience Publishers, New York etcGoogle Scholar
  16. Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulose ethanol. Biofuels Bioprod Biorefining 5:215–225CrossRefGoogle Scholar
  17. Hu F, Jang S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12PubMedCrossRefGoogle Scholar
  18. Kamide K, Okajama K (1981) Determination of distribution of sodium sulfate group in glucopyranose units of sodium cellulose sulfate by 13C and 1H nuclear magnetic resonance analysis. Polym J 13:163–166CrossRefGoogle Scholar
  19. Kang GJ, Malekian A, Ni YH (2004) Formation of peracetic acid from hydrogen peroxide and pentaacetyl glucose to activate oxygen delignification, solutions. Tappi J 3:19–22Google Scholar
  20. Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV (2008) Catalytic properties of TiO2 in wood delignification by acetic acid—hydrogen peroxide mixture. React Kinet Catal Lett 94:311–317CrossRefGoogle Scholar
  21. Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV (2009) Influence of UV pretreatment on the abies wood catalytic delignification in the medium acetic acid—hydrogen peroxide—TiO2. React Kinet Catal Lett 97:295–300CrossRefGoogle Scholar
  22. Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV, Petrov AV (2011a) A green one-step process of obtaining microcrystalline cellulose by catalytic oxidation of wood. React Kinet Mech Catal 104:337–343CrossRefGoogle Scholar
  23. Kuznetsov BN, Sudakova IG, Celzard A, Garyntseva NV, Ivanchenko NM, Petrov AV (2011b) Binding properties of lignins obtained at oxidative catalytic delignification of wood and straw. J Sib Fed Univ Chem 4:3–10Google Scholar
  24. Kuznetsova SA, Danilov VG, Kuznetsov BN, Yatsenkova OV, Alexandrova NB, Shambasov VK, Pavlenko NI (2003) Environmentally friendly catalytic production of cellulose by abies wood delignification in “acetic acid—hydrogen peroxide—water” media. Chem Sustain Dev 11:141–148Google Scholar
  25. Lucas M, Hanson SK, Wagner GL, Kimball DB, Rector KD (2012) Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresour Technol 119:174–180PubMedCrossRefGoogle Scholar
  26. Mac Leod JM (1987) Alkaline sulphite-anthraquinone pulps from softwoods. J Pulp Pap Sci 13:44–49Google Scholar
  27. Neson V (2011) Introduction to renewable energy. CRC Press, Boca RatonGoogle Scholar
  28. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRefGoogle Scholar
  29. Pario JC, Alonso JV, Santos V (1995) Kinetics of catalyzed organosolv processing of pine wood. Ind Eng Chem Res 12:4333–4342Google Scholar
  30. Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10PubMedCentralPubMedCrossRefGoogle Scholar
  31. Peschel D, Zhang K, Aggarwal N, Brendler E, Fischer S, Groth T (2010) Synthesis of novel celluloses derivatives and investigation of their mitogenic activity in the presence and absence of FGF2. Acta Biomater 6:2116–2125PubMedCrossRefGoogle Scholar
  32. Popplius-Levlin K, Mustonen R, Muovila T, Sundquist J (1991) Milox pulping with acetic acid-peroxyacetic acid. Paperi ja Puu 73:154–158Google Scholar
  33. Simoes JA, Citron DM, Aroutcheva A, Anderson RA, Zaneveld LJD (2002) Two novel vaginal microbicides (polystyrene sulfonate and cellulose sulfate) inhibit Gardnerella vaginalis and anaerobes commonly associated with bacterial vaginosis. J Antimicrob Chemother 8:2692–2695CrossRefGoogle Scholar
  34. Sundquist J (1996) Chemical pulping based on formic acid: summary of milox research. Paperi ja Puu 78:92–95Google Scholar
  35. Vasiliu-Oprea C, Nicoleanu J (1993) Micronized (and microcrystalline) celluloses. Obtainment and fields of application. Polym Plast Technol Eng 32:181–214CrossRefGoogle Scholar
  36. Vourinen T (1993) The role of carbohydrates in alkali anthraquinone pulping. J Wood Chem Technol 13:97–125CrossRefGoogle Scholar
  37. Wang ZM, Li L, Zheng BS, Normakhamatov N, Guo SY (2007) Preparation and anticoagulation activity of sodium cellulose sulfate. Int J Biol Macromol 41:376–382PubMedCrossRefGoogle Scholar
  38. Wang ZM, Li L, Xiao K-J, Wu J-Y (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresour Technol 100:1687–1690PubMedCrossRefGoogle Scholar
  39. Weinstock LA, Atalla RH, Reiner R, Moen MA, Hammel KE, Hutman CJ, Hill CL, Harrup MK (1997) A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalates as catalysts for multiple processes. J Mol Catal A 116:59–84CrossRefGoogle Scholar
  40. Yamomoto I, Takayama K, Honma K, Gonda T, Matsuzaki K, Uryu T, Yoshida O, Nakashima H, Yamamoto N, Kaneko Y, Mimura T (1991) Synthesis, structure and antiviral activity of sulfates of cellulose and its branched derivatives. Carbohydr Polym 14:53–63CrossRefGoogle Scholar
  41. Yao S (1998) Study on biocompatibility in a new biomicrocapsule system. J Chin Biotechnol 14:193–197Google Scholar
  42. Yao S (2000) An improved process for the preparation of sodium cellulose sulphate. Chem Eng J 78:199–204CrossRefGoogle Scholar
  43. Zhang K, Brendler E, Fischer S (2010) FT Raman investigation of sodium cellulose sulfate. Cellulose 17:427–435CrossRefGoogle Scholar
  44. Zhang K, Brendler E, Geissler A, Fischer S (2011a) Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via 13C NMR and FT Raman spectroscopy. Polymer 52:26–32CrossRefGoogle Scholar
  45. Zhang K, Peschel D, Bäucker E, Groth T, Fischer S (2011b) Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydr Polym 83:1659–1664CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Boris N. Kuznetsov
    • 1
    • 2
    Email author
  • Svetlana A. Kuznetsova
    • 1
    • 2
  • Vladimir A. Levdansky
    • 1
    • 2
  • Alexandr V. Levdansky
    • 1
  • Natalia Yu. Vasil’eva
    • 2
  • Nikolay V. Chesnokov
    • 1
    • 2
  • Natalia M. Ivanchenko
    • 1
  • Laurent Djakovitch
    • 3
  • Catherine Pinel
    • 3
  1. 1.Institute of Chemistry and Chemical Technology SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.IRCELYONVilleurbanne CedexFrance

Personalised recommendations