Wood Science and Technology

, Volume 49, Issue 3, pp 607–622 | Cite as

Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods

  • C. VázquezEmail author
  • R. Gonçalves
  • C. Bertoldo
  • V. Baño
  • A. Vega
  • J. Crespo
  • M. Guaita


The goal of this paper was to analyse the mechanical properties of Castanea sativa determined using an ultrasonic wave method. The results were compared with those obtained using the traditional static compression and bending methods with the same sample. The results were also compared with expected values for this species, and relationships between properties were determined to verify whether there were differences between the results and the expected behaviour of the wood. The elastic constants determined using ultrasound did not reveal statistically significant differences compared with the static methods, and the results were generally within the expected range for this species. This result makes ultrasound a powerful method for determining the elastic constants of wood, in addition to its feasibility and low cost. Future studies regarding optimisation of the specimen are important to improve the results of the Poisson’s ratios.


Elastic Constant Compression Test Stiffness Matrix Effective Frequency Compliance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Ministerio de Economía y Competitividad of Spain for providing financial support for the development of the research “Analisis numerico y experimental de uniones tradicionales y vigas de madera estructural. aplicacion de ndt y criterios de rotura para optimizar simulacion y dimensionado” (AGL2012-39368-C03-01).


  1. AENOR (1977) UNE 56535:1977; Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión. (Physical-Mechanical Properties of Wood. Determination of axial compression strength.) AENOR, MadridGoogle Scholar
  2. AENOR (1978) UNE 56528:1978; Características físico-mecánicas de la madera. Preparación de probetas para. (Physical-Mechanical Properties of Wood. Preparation of Specimens for Testing.) AENOR, MadridGoogle Scholar
  3. AENOR (1988) UNE 56542:1988; Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión perpendicular a las fibras (Physical-Mechanical Properties of Wood. Determination of Compression Strength Perpendicular to the Grain.) AENOR, MadridGoogle Scholar
  4. AENOR (2011) UNE EN 408:2011; Estructuras de madera. Madera aserrada y madera laminada encolada para uso estructural. Determinación de algunas propiedades físicas y mecánicas. (Timber Structures. Sawn and Glued Laminated Timber for Structural Use. Determination of some Physical-Mechanical Properties.) AENOR, MadridGoogle Scholar
  5. Argüelles Álvarez R, Arriaga Martitegui F, Martínez Calleja J (2000) Estructuras de madera. Diseño y cálculo (Wooden structures. Design and calculation). AITIM, Madrid, p 712Google Scholar
  6. Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, p 419Google Scholar
  7. Bucur V (1983) An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 21:116–126CrossRefGoogle Scholar
  8. Bucur V (2006) Acoustics of wood, 2nd edn. Springer Series in Wood Science. Springer, Berlin, HeidelbergGoogle Scholar
  9. Bucur V, Archer R (1984) Elastic-constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265CrossRefGoogle Scholar
  10. Bucur V, Böhnke I (1994) Factors affecting ultrasonic measurements in solid wood. Ultrasonics 32(5):385–390CrossRefGoogle Scholar
  11. Dahmen S, Ketata H, Ben Ghozlen MH, Hosten B (2010) Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave. Ultrasonics 50:502–507CrossRefPubMedGoogle Scholar
  12. El Mouridi M, Laurent T, Brancheriau L, Arnould O, Famiri A, Hakam A, Gril J (2011) Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples. Maderas Ciencia y tecnología 13(3):285–296CrossRefGoogle Scholar
  13. François MLM (1995) Identification des symétries matérielles de matériaux anisotropes (Identification of the material symmetries of anisotropic materials), Doctoral dissertation, Université Pierre et Marie Curie-Paris VIGoogle Scholar
  14. Gonçalves R, Trinca AJ, Cerri DGP (2011a) Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression testing. Wood Fiber Sci 43:64–75Google Scholar
  15. Gonçalves R, Trinca AJ, Ferreira GCS (2011b) Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. J Wood Sci 57(4):282–287CrossRefGoogle Scholar
  16. Gonçalves R, Trinca AJ, Pellis BP (2014) Elastic constants of wood determined by ultrassound using three geometries of specimens. Wood Sci Technol 48:269–287CrossRefGoogle Scholar
  17. Guitard D (1987) Mécanique du matériau bois et composites (Mechanic of wood and composites). Cépadues, France, pp 118–127Google Scholar
  18. Iñiguez Gonzalez G (2007) Clasificación mediante técnicas no destructivas y evaluación de las propiedades mecánicas de la madera aserrada de coníferas de gran escuadría para uso estructural (Classification by nondestructive techniques and evaluation of mechanical properties of sawn softwood large cross for structural use), Doctoral dissersation. Universidad Politécnica de Madrid, MadridGoogle Scholar
  19. Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRefGoogle Scholar
  20. Kohlhauser C, Hellmich C (2012) Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: application to metals and wood. Eur J Mech A-Solid 33:82–98CrossRefGoogle Scholar
  21. Longo R, Delaunay T, Laux D, El Mouridi M, Arnould O, Le Clézio E (2012) Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics 52:971–974CrossRefPubMedGoogle Scholar
  22. Oliveira FGR, Sales A, Lucchette FF, Candian M (2006) Efeito do comprimento do corpo de prova na velocidade ultrassonica em madeiras (Effect of specimen length on ultrasonic velocity of wood). Rev Árvore 30(1):141–145Google Scholar
  23. Ozyhar T, Hering S, Sanabria SJ, Niemz P (2013) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol 47(2):329–341CrossRefGoogle Scholar
  24. Preziosa C (1982) Méthode de détermination des constantes élastiques du matériau bois par utilisation des ultrasons (Method for determining elastic constants of wood material by use of ultrasound), Doctoral dissertation. Université d’Orléans, OrléansGoogle Scholar
  25. Preziosa C, Mudry M, Launay J, Gilletta F (1981) Détermination des constantes élastiques du bois par une méthode acoustique goniométrique. (Determination of the elastic constants of wood by an acoustic method using immersion). CR Acad Sci Paris Série II 293:91–94Google Scholar
  26. Trinca AJ, Gonçalves R (2009) Efeito das dimensões da seção transversal e da frequência do transdutor na velocidade de propagação de ondas de ultrassom na madeira (Effect of the transversal section dimensions and transducer frequency on ultrasound wave propagation velocity in wood). Rev Árvore 33(1):177–184CrossRefGoogle Scholar
  27. Vega A, Dieste A, Guaita M, Majada J, Baño V (2012) Modelling of the mechanical properties of Castanea sativa Mill. structural timber by a combination of non-destructive variables and visual grading parameters. Eur J Wood. Prod 70(6):839–844Google Scholar
  28. Zimmer J, Cost JR (1970) Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements. J Acoust Soc Am 47:795–803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Vázquez
    • 1
    Email author
  • R. Gonçalves
    • 2
  • C. Bertoldo
    • 2
  • V. Baño
    • 3
  • A. Vega
    • 3
  • J. Crespo
    • 1
  • M. Guaita
    • 1
  1. 1.Department of Agroforestry EngineeringUniversity of Santiago de CompostelaLugoSpain
  2. 2.College of Agricultural Engineering (FEAGRI)University of Campinas (UNICAMP)CampinasBrazil
  3. 3.CETEMAS, Finca Experimental La MataGradoSpain

Personalised recommendations