Wood Science and Technology

, Volume 48, Issue 1, pp 207–224 | Cite as

Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation

  • J. Abenojar
  • A. Q. Barbosa
  • Y. Ballesteros
  • J. C. del Real
  • L. F. M. da Silva
  • M. A. Martínez


Cork is one of the finest natural materials with high acoustic insulation properties due to its porous structure. In addition, cork presents high water resistance due to its hydrophobic nature. In many applications, cork panels need to be bonded to other materials for manufacturing composite materials or agglomerated cork sheets. In this case, its lack of wettability becomes an important disadvantage. This paper aims to improve the wettability of cork by silanization, atmospheric plasma treatment, and vacuum plasma treatment. The processing conditions of the three treatments were optimized. The surface characterization was performed by surface energy, roughness, and attenuated total reflectance-Fourier transform infrared spectroscopy measurements. Pull-off adherence and peel tests were carried out to evaluate the performance of the treatments with an epoxy adhesive. Plasma treatment of cork plates could be a useful tool to enhance adhesion properties in the manufacturing process of cork sandwich panels or other applications where it could be joined to any material.


Contact Angle Plasma Treatment Sound Pressure Level Silane Solution Peel Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge financial support by the Portuguese Foundation for Science and Technology (through project PTDC/EME-TME/098752/2008) and the Spanish Ministry of Science and Innovation (through project MAT2011-29182-C02-02).


  1. Abdallah FB, Cheikh RB, Baklouti M, Denchev Z, Cunha AM (2010) Effect of surface treatment in cork reinforced composites. J Polym Res 17:519–528CrossRefGoogle Scholar
  2. Abenojar J, Torregrosa-Coque R, Martínez MA, Martín-Martínez JM (2009) Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf Coat Technol 203:2173–2180CrossRefGoogle Scholar
  3. Anjos O, Pereira H, Rosa ME (2011) Tensile properties of cork in axial stress and influence of porosity, density, quality and radial position in the plank. Eur J Wood Wood Prod 69:85–91CrossRefGoogle Scholar
  4. Arashiro EY, Demarquette NR (1999) Use of the pendant drop method to measure interfacial tension between molten polymers. Mater Res 2:23–32CrossRefGoogle Scholar
  5. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Adhesion of polymers. Prog Polym Sci 34:948–968CrossRefGoogle Scholar
  6. Barberis A, Dettori S, Filiggheddu MR (2003) Management problems in Mediterranean cork oak forests: post-fire recovery. J Arid Environ 54:565–569CrossRefGoogle Scholar
  7. Barbosa AQ, da Silva LFM, Öchsner A, Abenojar J, del Real JC (2012) Influence of the size and amount of cork particles on the impact toughness of a structural adhesive. J Adhes 88:452–470CrossRefGoogle Scholar
  8. Brochier Salon MC, Abdelmouleh M, Boufi S, Belgacem NM, Gandini A (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci 289:249–261CrossRefGoogle Scholar
  9. Castro O, Silva JM, Devezas T, Silva A, Gil L (2010) Cork agglomerates as an ideal core material in lightweight structures. Mater Des 31:425–432CrossRefGoogle Scholar
  10. Chiang CH, Ishida H, Koenig JL (1980) The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci 74:396–404CrossRefGoogle Scholar
  11. Costa A, Pereira H, Oliveira A (2003) Variability of radial growth in cork oak adult trees under cork production. Forest Ecol Manag 175:239–246CrossRefGoogle Scholar
  12. Cumbre F, Lopes F, Pereira H (2000) The effect of water boiling on annual ring width and porosity of cork. Wood Fiber Sci 32:125–133Google Scholar
  13. del Real JC, Cano de Santayana M, Abenojar J, Martínez MA (2006) Adhesive bonding of aluminium with structural acrylic adhesives: durability in wet environments. J Adhes Sci Technol 20:1801–1818CrossRefGoogle Scholar
  14. del Real JC, Ballesteros Y, Chamochin R, Abenojar J, Molisani L (2011) Influence of surface preparation on the fracture behavior of acrylic adhesive/CFRP composite joints. J Adhes 87:366–381CrossRefGoogle Scholar
  15. Díaz-Parralejo A, Díaz-Díez MA, Macías-García A, de la Rosa-Blanco P, Gómez Serrano V (2003) Bending strength of black and composite agglomerates of cork. Mater Lett 57:4004–4008CrossRefGoogle Scholar
  16. Encinas N, Díaz-Benito B, Abenojar J, Martínez MA (2010) Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf Coat Technol 205:396–402CrossRefGoogle Scholar
  17. Encinas N, Abenojar J, Martínez MA (2012a) Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. Int J Adhes Adhes 33:1–6CrossRefGoogle Scholar
  18. Encinas N, Dillingham RG, Oakley BR, Abenojar J, Martínez MA, Pantoja M (2012b) Atmospheric pressure plasma hydrophilic modification of a silicone surface. J Adhes 88:321–336CrossRefGoogle Scholar
  19. Farag MM (2008) Quantitative methods of materials substitution: application to automotive components. Mater Des 29:374–378CrossRefGoogle Scholar
  20. Gibson LJ, Ashby MF (1997) Cellular solids—structure and properties, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  21. Gibson LJ, Easterling KE, Ashby MF (1981) The structure and mechanics of cork. Proc R Soc Lond A 377:99–117CrossRefGoogle Scholar
  22. Gil L (1998) Cortiça: produção, tecnologia e aplicação (Cork: production, technology and application). INETI, LisboaGoogle Scholar
  23. González-Adrados JR, García-Vallejo MC, Cáceres-Esteban MJ, García de Ceca JL, González-Hernández F, Calvo-Haro R (2012) Control by ATR-FTIR of surface treatment of cork stoppers and its effect on their mechanical performance. Wood Sci Technol 46:349–360CrossRefGoogle Scholar
  24. Graefe S, Leuschner Ch, Coners H, Hertel D (2011) Root functioning in tropical high-elevation forests: environmental vs. biological control of root water absorption. Environ Exp Bot 71:329–336Google Scholar
  25. Kulinich SA, Farzaneh M (2004) Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers. Surf Sci 573:379–390CrossRefGoogle Scholar
  26. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  27. Moreira RAS, de Melo FJQ, Dias Rodrigues JF (2010) Static and dynamic characterization of composition cork for sandwich beam cores. J Mater Sci 45:3350–3366CrossRefGoogle Scholar
  28. Nierop KGJ (2001) Temporal and vertical organic matter differentiation along a vegetation succession as revealed by pyrolysis and thermally assisted hydrolysis and methylation. J Anal Appl Pyrolysis 61:111–132CrossRefGoogle Scholar
  29. Novák I, Popelka A, Krupa I, Chodák I, Janigová I, Nedelčev T, Špírková M, Kleinová A (2012) High-density polyethylene functionalized by cold plasma and silanes. Vacuum 86:2089–2094CrossRefGoogle Scholar
  30. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1746CrossRefGoogle Scholar
  31. Pantoja M, Martínez MA, Abenojar J, Velasco F, del Real JC (2010) Structural and mechanical characterization of γ-methacryloxypropyltrimethoxysilane (MPS) on Zn-electrocoated steel. J Adhes Sci Technol 24:1885–1901CrossRefGoogle Scholar
  32. Pereira H (1984) Produção e utilização da cortiça. Situação actual e perspectivas de desenvolvimento (Production and use of cork. Real state and future developments). Boletim do Instituto dos Produtos Florestais—Cortiça 545:99–112Google Scholar
  33. Pereira H (1988) O que é a cortiça (What is cork?). Boletim do Instituto dos Produtos Florestais—Cortiça 600:15–18Google Scholar
  34. Pereira H (2007) Cork: biology, production and uses. Elsevier, AmsterdamGoogle Scholar
  35. Plueddemann EP (1991) Silane coupling agents, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  36. Ponte-e-Sousa JCA de CC da, Neto-Vaz AM (2011) Cork and metals: a review. Wood Sci Technol 45:183–202CrossRefGoogle Scholar
  37. Pretsch E, Bühlmann P, Affolter C, Herrera A, Martínez R (2001) Determinación estructural de compuestos orgánicos (structure determination of organic compounds). Springer, BarcelonaGoogle Scholar
  38. Puomi P, Fagerholm H (2001) Characterization of hot-dip galvanized (HDG) steel treated with bis-1,2-(triethoxysilyl)ethane and γ-aminopropyltriethoxysilane. J Adhes Sci Technol 15:869–888CrossRefGoogle Scholar
  39. Reis L, Silva A (2009) Mechanical behaviour of sandwich structures using natural cork agglomerates as core materials. J Sandw Struct Mater 11:487–500CrossRefGoogle Scholar
  40. Reis PNB, Ferreira JAM, Silva PAA (2011) Mechanical behaviour of composites filled by agro-waste materials. Fibers Polym 12:240–246CrossRefGoogle Scholar
  41. Rosa ME, Fortes MA (1991) Deformation and fracture of cork in tension. J Mater Sci 26:341–348CrossRefGoogle Scholar
  42. Santos JS, Rodrigues JD, Moreira RAS (2010) Application of cork compounds in sandwich structures for vibration damping. J Sandw Struct Mater 12:495–515CrossRefGoogle Scholar
  43. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365CrossRefGoogle Scholar
  44. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, p 224CrossRefGoogle Scholar
  45. Svorcík V, Kolárová K, Slepicka P, Machová A, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab 91:1219–1225CrossRefGoogle Scholar
  46. Tender C, Txier Ch, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30CrossRefGoogle Scholar
  47. Tzur A (1986) Multi-layer intumescent-ablator endothermic fire retardant compositions. U.S. Pat 4632865Google Scholar
  48. Van Ooij WJ, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, Puomi P (2005) Corrosion protection properties of organofunctional silanes—an overview. Tsinghua Sci Technol 10:639–664CrossRefGoogle Scholar
  49. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci 41:806–819CrossRefGoogle Scholar
  50. Yuan W, Van Ooij WJ (1997) Characterization of organofunctional silane films on zinc substrates. J Colloid Interface Sci 185:197–209PubMedCrossRefGoogle Scholar
  51. Zabalza Bribián I, Valero Capilla A, Aranda Usón A (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Abenojar
    • 1
  • A. Q. Barbosa
    • 2
  • Y. Ballesteros
    • 3
  • J. C. del Real
    • 3
  • L. F. M. da Silva
    • 2
  • M. A. Martínez
    • 1
  1. 1.Materials Performance Group, Materials Science and Engineering DepartmentUniversidad Carlos III de MadridLeganésSpain
  2. 2.Institute of Mechanical Engineering (IDMEC), Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.Mechanical Engineering Department, Institute for Research in TechnologyUniversidad Pontificia ComillasMadridSpain

Personalised recommendations