Wood Science and Technology

, Volume 47, Issue 2, pp 411–422 | Cite as

Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas

  • Bouddah Poaty
  • Bernard Riedl
  • Pierre Blanchet
  • Vincent Blanchard
  • Luc Stafford


Plasma treatments for black spruce wood (Picea mariana (Mill.) B.S.P.), a widespread forest species from Canada, were carried out in order to waterproof the exposed surfaces. Experiments were performed using inductively coupled argon plasma with carbon tetrafluoride as the gaseous precursor for plasma-enhanced chemical vapor deposition of functional fluoropolymer coatings on wood. Analysis of the wettability through water contact angle measurements showed water-repellent characteristics, with static contact angles up to 130° depending on plasma exposure time, CF4 concentration in the Ar/CF4 plasma, and plasma source-to-substrate distance. X-ray photoelectron spectroscopy investigations of plasma-treated wood surfaces confirmed the growth of a thin, fluorocarbon layer with fluorine atomic concentrations close to 50 % on highly hydrophobic wood surfaces. Estimation of the thickness of the coatings by stylus profilometry revealed that a minimum layer thickness of about 80 nm is required to obtain water repellant wood surfaces with minimum water uptake. This complete set of data indicates that fluorocarbon-containing plasmas represent a very promising approach for improving the durability of wood products in wet and humid conditions.


Contact Angle Wood Sample Wood Surface HMDSO Plasma Exposure Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by FPInnovations, Plasmionique, and the National Science and Engineering Research Council (NSERC) of Canada through the Collaborative Research and Development (CRD) program. The authors would like to acknowledge the technical contribution of Fouad Bacher and Lanoir Maaloul in some of the data acquisition.


  1. Avramidis G, Hauswald E, Lyapin A, Militz H, Viöl W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater Sci Eng 1–2:52–60CrossRefGoogle Scholar
  2. Becker KH, Belkind A (2003) Introduction to plasmas. Vac Technol Coat 5:31–36Google Scholar
  3. Blanchard V, Riedl B, Blanchet P, Evans P (2009) Modification of sugar maple booard surface by plasma treatments at low pressure. Contact angle. Wettability Adhes 6:311–323Google Scholar
  4. Busnel F, Blanchard B, Prégent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24:1401–1413CrossRefGoogle Scholar
  5. Chen X, Pfender E (1983) Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma Proc 3:351–366CrossRefGoogle Scholar
  6. Cho DL, Sjöblom E (1990) Plasma treatment of wood. J Appl Polym Sci: Appl Polym Symp 46:461–472CrossRefGoogle Scholar
  7. Denes AR, Young RA (1999) Reduction of weathering degradation of wood through plasma-polymer coating. Holzforschung 53:632–640Google Scholar
  8. Denes AR, Tshabalala MA, Rowell R, Denes F, Young RA (1999) Hexamethyldisiloxane-plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung 53:318–326Google Scholar
  9. Esteves Magalhães WL, Ferreira de Souza M (2000) 1-butene-cold plasma coating of solid softwood. Second Woodcoatings Congress, The Hague, NL paper 32:23–25Google Scholar
  10. Evans PD, Ramos M, Senden T (2007) Modification of wood using a glow discharge plasma derived from water. In: Englund F, Hill CAS, Militz H, Segerholm BK (eds) Proceedings of the third European conference on wood modification, Bangor, Wales, pp 123–132Google Scholar
  11. Fanelli F, Fracassi F, d`Agostino R (2010) Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures. Surf Coat Technol 204:1779–1784CrossRefGoogle Scholar
  12. Fracassi F, Occhiello E, Coburn W (1987) Effect of ion bombardment on the plasma-assisted etching and deposition of plasma perfluoropolymer thin films. J Appl Phys 62:3980–3981CrossRefGoogle Scholar
  13. Hegemann D, Brunner H, Oehr C (2001) Plasma treatment of polymers to generate stable, hydrophobic surfaces. Plasmas Polym 6:221–235CrossRefGoogle Scholar
  14. Kaplan SL, Rose PW (1991) Plasma surface treatment of plastics to enhance adhesion. Int J Adhes Adhes 11:109–113CrossRefGoogle Scholar
  15. Milella A, Palumbo F, d’Agostino R (2008) Fundamentals on plasma deposition of fluorocarbon films. In: d’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N, Arefi-Khonsari F (eds) Advanced plasma technology. Wiley, Weinheim, pp 175–195Google Scholar
  16. Patz W, Flaming A (1978) The dependence of the porosity of ion-plated films on the process parameters. Thin Solid Films 51:297–303CrossRefGoogle Scholar
  17. Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111CrossRefGoogle Scholar
  18. Podgorski L, Bousta C, Schambourg F, Maguin J, Chevet B (2001) Surface modification of wood by plasma polymerization. Pigment Resin Technol 31:33–40CrossRefGoogle Scholar
  19. Probst F, Laborie MP, Pizzi A, Deglise XH (1997) Molecular mechanisms experimental methods applied to varnish/primer/wood interactions. Holzforschung 51:459–466CrossRefGoogle Scholar
  20. Rehn P, Wolkenhauer A, Bente M, Förster S, Viöl W (2003) Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf Coat Technol 174–175:515–518CrossRefGoogle Scholar
  21. Sakata I, Morita M, Furuichi H, Kawaguchi Y (1991) Improvement of plybond strength of paperboard by corona treatment. J Appl Polym Sci 42:2099–2104CrossRefGoogle Scholar
  22. Singh H, Graves DB (2000) Measurements of the electron energy distribution function in molecular gases in a shielded inductively coupled plasma. J Appl Phys 88:3889–3898CrossRefGoogle Scholar
  23. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008) Plasma treatment of heat treated beech wood—Investigation on surface free energy. Holzforschung 62:472–474CrossRefGoogle Scholar
  24. Wrobel AM, Wertheimer MR (1990) Plasma polymerized organosilicones and organometallics. In: d`Agostino R (ed) Plasma deposition, treatment and etching of polymers. Academic Press, Inc., New York, pp 163–268Google Scholar
  25. Zanini S, Riccardi C, Orlandi M, Fornara V, Colombini MP, Donato DI, Legnaioli S, Palleschi V (2008) Wood coated with plasma-polymer for water repellence. Wood Sci Technol 42:149–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bouddah Poaty
    • 1
  • Bernard Riedl
    • 1
  • Pierre Blanchet
    • 2
  • Vincent Blanchard
    • 2
  • Luc Stafford
    • 3
  1. 1.Centre de Recherche sur le Bois, Pavillon G.-H. KrugerUniversité LavalQuebecCanada
  2. 2.FPInnovationsQuébecCanada
  3. 3.Département de PhysiqueUniversité de MontréalMontrealCanada

Personalised recommendations