Wood Science and Technology

, Volume 46, Issue 6, pp 1113–1125 | Cite as

Simultaneous X-ray diffraction and X-ray fluorescence microanalysis on secondary xylem of Norway spruce

  • Kari Pirkkalainen
  • Marko Peura
  • Kirsi Leppänen
  • Ari Salmi
  • Antti Meriläinen
  • Pekka Saranpää
  • Ritva Serimaa
Original

Abstract

Secondary xylem of Norway spruce was studied by X-ray microanalysis. Average dimensions of cellulose crystallites, fraction of oriented cellulose, mean microfibril angle, and nutrient element concentrations of K, Ca, Mn, and Zn were simultaneously determined using microfocused synchrotron radiation and a combination of X-ray diffraction and X-ray fluorescence spectroscopy techniques. The variation of these quantities in the microscopic size scale was noticeable, and similar between samples taken from the same annual ring. The mean microfibril angle and the nutrient concentrations of Ca, Mn, and Zn showed a correlation. The mean values of the structural parameters and their variation as a function of the annual ring were similar as reported in previous studies on Norway spruce.

Notes

Acknowledgments

The authors wish to thank the European Synchrotron Radiation Facility (ESRF) for allocating the necessary experiment time for our study. The Academy of Finland is gratefully acknowledged for supporting this work (Grant SA-1127759). K.P. thanks the Finnish National Graduate School in Nanoscience (NGS-NANO) for financial support.

References

  1. Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537Google Scholar
  2. Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manage 119:51–62CrossRefGoogle Scholar
  3. Bergh J, Linder S, Bergström J (2005) Potential production of Norway spruce in Sweden. For Ecol Manage 204:1–10CrossRefGoogle Scholar
  4. Bielewski M, Wegrzynek D, Lankosz M, Markowicz A, Chinea-Cano E, Bamford SA (2006) Micro-beam x-ray fluorescence analysis of individual particles with correction for absorption effects. X-Ray Spectrom 35:238–242CrossRefGoogle Scholar
  5. Boman J, Larsson C, Olsson M (1996) Trace element analysis of Scots pine and Norway spruce needles by energy-dispersive x-ray fluorescence spectrometry. X-Ray Spectrom 25:89–94CrossRefGoogle Scholar
  6. Cave ID (1966) Theory of x-ray measurement of microfibril angle in wood. For Prod J 16:37–42Google Scholar
  7. Eder M, Jungnikl K, Burgert I (2009) A close-up view of wood structure and properties across a annual ring of Norway spruce (Picea abies [L] Karst.). Trees 23:79–84CrossRefGoogle Scholar
  8. Hakkila P (1966) Investigations on the basic density of Finnish pine, spruce and birch wood. Commun Inst Fenn 61:1–98Google Scholar
  9. Harju L, Lill J-O, Saarela K-E, Heselius S-J, Hernberg FJ, Lindroos A (1996) Study of seasonal variations of trace-element concentrations within tree rings by thick-target PIXE analyses. Nucl Inst Meth B 109(110):536–541CrossRefGoogle Scholar
  10. Kaakinen S, Piispanen R, Lehto S, Metsometsä J, Nilsson U, Saranpää P, Linder S, Vapaavuori E (2009) Growth, wood chemistry, and fibre length of Norway spruce in a long-term nutrient optimization experiment. Can J For Res 39:410–419CrossRefGoogle Scholar
  11. Lichtenegger HC, Müller M, Paris O, Riekel C, Fratzl P (1999) Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. J Appl Cryst 32:1127–1133CrossRefGoogle Scholar
  12. Lichtenegger HC, Müller M, Wimmer R, Fratzl P (2003) Microfibril angles inside and outside crossfields of Norway spruce tracheids. Holzforschung 57:13–20CrossRefGoogle Scholar
  13. Lundgren C (2004a) Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fenn 38:95–106Google Scholar
  14. Lundgren C (2004b) Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fenn 38:107–117Google Scholar
  15. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn, Academic, LondonGoogle Scholar
  16. Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu CL, Willfor S, Oksman K, Tenkanen M (2010) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17:69–81CrossRefGoogle Scholar
  17. Modrow H (2004) Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view. Appl Spectrosc Rev 39:183–290CrossRefGoogle Scholar
  18. Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479CrossRefGoogle Scholar
  19. Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative x-ray powder diffraction analysis of cellulose. J Appl Cryst 21:393–397CrossRefGoogle Scholar
  20. Peura M, Müller M, Vainio U, Sarén MP, Saranpää P, Serimaa R (2008a) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees 22:49–61CrossRefGoogle Scholar
  21. Peura M, Sarén MP, Laukkanen J, Nygård K, Andersson S, Saranpää P, Paakkari T, Hämäläinen K, Serimaa R (2008b) The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem. Trees 22:499–510CrossRefGoogle Scholar
  22. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129CrossRefGoogle Scholar
  23. Sarén MP, Serimaa R, Andersson S, Paakkari T, Saranpää P, Pesonen E (2001) Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). J Struct Biol 136:101–109PubMedCrossRefGoogle Scholar
  24. Sarén MP, Serimaa R, Andersson S, Saranpää P, Keckes J, Fratzl P (2004) Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids in Norway spruce. Trees 18:354–362CrossRefGoogle Scholar
  25. Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim Acta, Part B 62:63–68CrossRefGoogle Scholar
  26. Somogyi A, Drakopoulos M, Vincze L, Vekemans B, Camerani C, Janssens K, Snigirev A, Adams F (2001) ID18F: a new micro-x-ray fluorescence end-station at the European synchrotron radiation facility (ESRF): preliminary results. X-Ray Spectrom 30:242–252CrossRefGoogle Scholar
  27. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  28. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRefGoogle Scholar
  29. Verrill SP, Kretschmann DE, Herian VL (2001) JMFA—A graphically interactive Java program that fits microfibril angle X-ray diffraction data. Research note FPL-RN-0283. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, USAGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kari Pirkkalainen
    • 1
  • Marko Peura
    • 1
  • Kirsi Leppänen
    • 1
  • Ari Salmi
    • 1
  • Antti Meriläinen
    • 1
  • Pekka Saranpää
    • 2
  • Ritva Serimaa
    • 1
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Forest Research Institute (METLA)VantaaFinland

Personalised recommendations