Wood Science and Technology

, Volume 46, Issue 5, pp 927–938

Moisture-dependent orthotropic elasticity of beech wood

Original

Abstract

Elastic material properties are one of the most important material characteristics in mechanical modelling. Wood with distinctively different properties in the longitudinal, radial and tangential directions exhibits a strong moisture-dependent material characteristic in the elastic range. In order to characterise beech wood as an orthotropic material, all of the independent elastic properties were determined at different moisture conditions. These characteristic properties have never been determined before as a function of moisture content yet are vital to the field of wood modelling. All elastic parameters, except for some Poisson’s ratios, show a decrease in stiffness with increasing moisture content. In comparison to available literature references at a moisture content of ω ≈ 12%, the identified values were of the same order of magnitude. The determined material properties can be used to investigate the mechanical behaviour of beech wood structures including different moisture conditions.

References

  1. Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18(4):141–146CrossRefGoogle Scholar
  2. Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, New YorkGoogle Scholar
  3. Bucur V (1995) Acoustics of wood. CRC Press, Boca RatonGoogle Scholar
  4. Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265CrossRefGoogle Scholar
  5. Dahl KB, Malo KA (2009a) Linear shear properties of spruce softwood. Wood Sci Technol 43(5–6):499–525CrossRefGoogle Scholar
  6. Dahl KB, Malo KA (2009b) Nonlinear shear properties of spruce softwood:experimental results. Wood Sci Technol 69(13):2144–2151Google Scholar
  7. DIN V 65352 (1987) Verfahren zur statistischen Auswertung der Prüfergebnisse bei der Qualifikations- und Abnahmeprüfung von Faserverbundwerkstoffen. DIN Deutsches Institut für Normung e. VGoogle Scholar
  8. Diot S, Guines D, Gavrus A, Ragneau E (2008) Minimization of friction influence on the evaluation of rheological parameters from compression test—application to a forging steel behavior identification. J Eng Mater T ASME 131(1):10Google Scholar
  9. Dumail JF, Oloffson K, Salmén L (2000) An analysis of rolling shear of spruce wood by the Iosipescu method. Holzforschung 54:420–426CrossRefGoogle Scholar
  10. Garab J, Keunecke D, Hering S, Szalai J, Niemz P (2010) Measurement of standard and off-axis elastic moduli and Poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci Technol 44(3):451–464CrossRefGoogle Scholar
  11. Grimsel M (1999) Mechanisches Verhalten von Holz. Dissertation, Dresden, p 89Google Scholar
  12. Guitard D, Amri FE (1987) Tridimensional elastic behavior predicting models for hardwood and softwood (in French). Ann Sci Forest 44:335–358CrossRefGoogle Scholar
  13. Hearmon RFS, Barkas WW (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and Sitka spruce. In: Proceedings of the physical societyGoogle Scholar
  14. Hörig H (1933) Zur Elastizität des Fichtenholzes. Z Tech Phys 12:369–379Google Scholar
  15. Hörig H (1935) Anwendung der Elastizitätstheorie anisotroper Körper auf Messungen an Holz. Arch Appl Mech 6(1):8–14Google Scholar
  16. Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2:537Google Scholar
  17. Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327CrossRefGoogle Scholar
  18. Keunecke D, Hering S, Niemz P (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci Technol 42(8):633–647CrossRefGoogle Scholar
  19. Keylwerth R (1951) Die anisotrope Elastizität des Holzes und der Lagenhölzer. Verlag des Vereins Deutscher Ingenieure—VDI-Forschungsheft 430Google Scholar
  20. Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Springer, BerlinGoogle Scholar
  21. Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Dissertation, Bochum, p 162Google Scholar
  22. Neuhaus FH (1983) Über das elastische Verhalten von Fichtenhoiz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh Werkst 41:21–25CrossRefGoogle Scholar
  23. Neumann AJ (1998) Ermittlung und Bewertung der elastischen Materialkennwerte von Vollholz in Abhängigkeit der Feuchte und der Anisotropie. Master Thesis, Dresden, p 87Google Scholar
  24. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & CoGoogle Scholar
  25. Niemz P, Caduff D (2008) Research into determination of the Poisson ratio of spruce wood. Holz Roh Werkst 66(1):1–4CrossRefGoogle Scholar
  26. Pozgaj A, Chovanec D, Kuriatko S, Babiak M (1993) Štruktúra a vlastnosti dreva (Wood structure and properties). Príroda, BratislavaGoogle Scholar
  27. Stamer J (1935) Elastizitätsuntersuchungen an Hölzern. Arch Appl Mech 6(1):1–8Google Scholar
  28. Stamer J, Sieglerschmidt H (1933) Elastische Formänderung der Hölzer. Zeitschrift des Vereins Deutscher Ingenieure 77(19):503–505Google Scholar
  29. van Mier JGM (1997) Fracture processes of concrete: assessment of material parameters for fracture models. CRC Press, Boca RatonGoogle Scholar
  30. Wommelsdorf O (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Hannover, p 100Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for Building Materials (Wood Physics)ETH ZurichZurichSwitzerland

Personalised recommendations