Wood Science and Technology

, Volume 46, Issue 1–3, pp 487–501 | Cite as

Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure

  • Thibaud SuriniEmail author
  • Fatima Charrier
  • Jérôme Malvestio
  • Bertrand Charrier
  • Amine Moubarik
  • Patrick Castéra
  • Stéphane Grelier


An original heat treatment performed under vacuum pressure was investigated. Maritime pine samples were treated at six different temperatures: 140, 160, 180, 200, 230 and 260°C. The physical and mechanical consequences, i.e. bending strength (MOR), modulus of elasticity (MOE), hygroscopic behaviour, equilibrium moisture contents and anti-swelling efficiency (ASE) were studied. A no-choice feeding test according to the NF EN 117 standard was achieved. Temperatures up to 200°C had no significant effect on wood properties. However, at 230 and 260°C, the decrease in MOR was severe, reaching 42.5 and 62.5%, respectively. Whatever the treatment conditions, wood samples were still highly degraded by termites, revealing no increase in their durability.


Hemicellulose Equilibrium Moisture Content Wood Property Vacuum Pressure Biodegradation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank INRA (Institut National de la Recherche Agronomique) and the Région Aquitaine for funding, as well as Dr Marie-France Thévenon and Mrs Christine Baudassé for providing termites and for their precious advices. Dr. Nicola Hewitt is fully thanked for English revision. Thanks also to Mr. Ghislain Simo for his help and research work in heat treatment processes.


  1. AFNOR NF EN 117 (2005) Wood preservatives—determination of toxic values against Reticulitermes species (European termites) (Laboratory method). AFNORGoogle Scholar
  2. Andersson S, Serimaa R, Vaananen T, Paakkari T, Jamsa S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforsch 59(4):422–427CrossRefGoogle Scholar
  3. Awoyemi L, Westermark U (2005) Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci Technol 39(6):484–491CrossRefGoogle Scholar
  4. Boonstra MJ, Van Acker J, Kegel E, Stevens M (2007a) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1):31–57CrossRefGoogle Scholar
  5. Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007b) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679–690CrossRefGoogle Scholar
  6. Borrega M, Kärenlampi PP (2008) Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst 66(1):63–69CrossRefGoogle Scholar
  7. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22(2):143–155CrossRefGoogle Scholar
  8. Clausen CA, Yang V (2007) Protecting wood from mould, decay, and termites with multi-component biocide systems. Int Biodeter Biodegrad 59(1):20–24CrossRefGoogle Scholar
  9. Clément JL, Bagnères A-G, Uva P, Wilfert L, Quintana A, Reinhard J, Dronnet S (2001) Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc 48(3):202–215CrossRefGoogle Scholar
  10. Curling SF, Clausen CA, Winandy JE (2002) Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi. Int Biodeter Biodegrad 49(1):13–19CrossRefGoogle Scholar
  11. de Groot RC, Ross RJ, Nelson WJ (1998) Non-destructive assessment of wood decay and termite attack in southern pine sapwood. Wood Prot 3:25–34Google Scholar
  12. Demanet A (1998) Wood/water mechanical interactions and application to the study of collapse of oak. PhD Thesis, Université Bordeaux 1, Bordeaux (in French)Google Scholar
  13. Doi S, Kurimoto Y, Ohmura W, Ohara S, Aoyama M, Yoshimura T (1999) Effects of heat treatments of wood on the feeding behaviour of two subterranean termites. Holzforsch 53(3):225–229CrossRefGoogle Scholar
  14. Duchez L, Guyonnet R (1998) Optimisation of heat treatment of wood through a fractional factorial plan. Anal Mag 26(8):39–44 (in French)Google Scholar
  15. Esteves B, Marques A, Domingos I, Pereira H (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41(3):193–207CrossRefGoogle Scholar
  16. Esteves B, Domingos IJ, Pereira HM (2008) Pine wood modification by heat treatment in air. BioResources 3(1):142–154Google Scholar
  17. Frühwald E (2007) Effect of high-temperature drying on properties of Norway spruce and larch. Holz Roh Werkst 65(6):411–418CrossRefGoogle Scholar
  18. Gündüz G, Korkut S, Korkut DS (2008) The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp pallasiana var. pallasiana) wood. Bioresour Technol 99(7):2275–2280PubMedCrossRefGoogle Scholar
  19. Hakkou M, Pétrissans M, El Bakali I, Gérardin P, Zoulalian A (2005a) Wettability changes and mass loss during heat treatment of wood. Holzforsch 59(1):35–37CrossRefGoogle Scholar
  20. Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005b) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89(1):1–5CrossRefGoogle Scholar
  21. Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91(2):393–397CrossRefGoogle Scholar
  22. Indrayani Y, Yoshimura T, Fujii Y, Yanase Y, Fujiwara Y, Adachi A, Kawaguchi S, Miura M, Imamura Y (2005) A case study of Incisitermes minor (Isoptera: Kalotermitidae) infestation in Wakayama prefecture, Japan. Sociobiol 46(1):45–64Google Scholar
  23. Kocaefe D, Poncsák S, Doré G, Younsi R (2008a) Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkst 66(5):355–361CrossRefGoogle Scholar
  24. Kocaefe D, Shi JL, Yang D-Q, Bouazara M (2008b) Mechanical properties, dimensional stability, and mold resistance of heat-treated jack pine and aspen. For Prod J 58(6):88–93Google Scholar
  25. Korkut S, Akgül M, Dündar T (2008) The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour Technol 99(6):1861–1868PubMedCrossRefGoogle Scholar
  26. Kubojima Y, Okano T, Ohta M (1998) Vibrational properties of Sitka spruce heat-treated in nitrogen gas. J Wood Sci 44(1):73–77CrossRefGoogle Scholar
  27. Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46(1):8–15CrossRefGoogle Scholar
  28. Mburu F, Dumarçay S, Huber F, Pétrissans M, Gérardin P (2007) Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: characterisation of physicochemical properties and improvement of bio-resistance. Bioresour Technol 98(18):3478–3486PubMedCrossRefGoogle Scholar
  29. Mburu F, Dumarçay S, Bocquet J-F, Pétrissans M, Gérardin P (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polym Degrad Stab 93(2):401–405CrossRefGoogle Scholar
  30. Metsä-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170°C, 190°C, 210°C and 230°C. Holz Roh Werkst 64(3):192–197CrossRefGoogle Scholar
  31. Militz H (2002) Heat treatment technologies in Europe: scientific background and technological state-of-art. The international research group on wood preservation—33rd annual meeting, CardiffGoogle Scholar
  32. Mitchell PH (1988) Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci 20(3):320–355Google Scholar
  33. Mounguengui S, Dumarcay S, Gerardin P (2007) Investigation on catechin as a beech wood decay biomarker. Int Biodeter Biodegrad 60(4):238–244CrossRefGoogle Scholar
  34. Nobre T, Nunes L, Eggleton P, Bignell DE (2006) Distribution and genetic variation of Reticulitermes (Isoptera: Rhinotermitidae) in Portugal. Heredity 96(5):403–409PubMedCrossRefGoogle Scholar
  35. Nunes L, Nobre T, Rapp AO (2004) Thermally modified wood in choice tests with subterranean termites. COST E37, ReinbeckGoogle Scholar
  36. Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78(3):349–358CrossRefGoogle Scholar
  37. Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40(8):647–663CrossRefGoogle Scholar
  38. Rapp AO, Sailer M (2000) Oil heat treatment of wood in Germany—State of the art. Review on heat treatments of wood. Rapp AO. Antibes, COST Action E22—Environmental optimisation of wood protection: 47–64Google Scholar
  39. Repellin V (2006) Optimisation of time and temperature parameters of heat treatment of wood. Modification of wood properties in use, related to physico-chemical and ultrastructural changes due to heat treatment. PhD Thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne (in French)Google Scholar
  40. Rigoni L, Ropp J (2008) Process of wood treatment and corresponding device. Suisse, Organisation mondiale de la propriété intellectuelle. WO 2009/001173 A1:16 (in French)Google Scholar
  41. Ropp J (2007) Heat treatment of wood by conduction. Tracés 17:8–10 (in French)Google Scholar
  42. Ropp J, Chaouch M, Pétrissans M (2008) Heat treatment of wood by conduction and under vacuum pressure, by PRODEO. ARBORA, Bordeaux (in French)Google Scholar
  43. Santos JA (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Technol 34(1):39–43CrossRefGoogle Scholar
  44. Shi JL, Kocaefe D, Amburgey T, Zhang J (2007a) A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz Roh Werkst 65(5):353–358CrossRefGoogle Scholar
  45. Shi JL, Kocaefe D, Zhang J (2007b) Mechanical behaviour of Québec wood species heat-treated using ThermoWood process. Holz Roh Werkst 65(4):255–259CrossRefGoogle Scholar
  46. Shiraishi N, Kajita H, Norimoto M (1993) Recent research on wood and wood-based materials. Elsevier Science and TechnologyGoogle Scholar
  47. Tjeerdsma BF, Boonstra MJ, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56(3):149–153CrossRefGoogle Scholar
  48. Vernois M (2001) Heat treatment of wood in France—State of the Art. Review on heat treatments of wood. Rapp AO. Antibes, COST Action E22—Environmental optimisation of wood protection: 35–42Google Scholar
  49. Wang JY, Cooper PA (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh Werkst 63(6):417–422CrossRefGoogle Scholar
  50. Weiland JJ (2000) Physico-chemical study of heat treatment of wood. Optimisation of the parameters of retification process. PhD Thesis, Ecole des Mines, Saint-Etienne (in French)Google Scholar
  51. Winandy JE, Morrell JJ (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci 25(3):278–288Google Scholar
  52. Woessner P (2008) Influence of heat treatment on mechanical resistance of pine wood. PhD Thesis, Université Bordeaux 1, Bordeaux (in French)Google Scholar
  53. Woessner P, Valentin G (2004) Determination of tension characteristics of maritime pine after heat treatment (retification). Vila Real (Portugal)Google Scholar
  54. Yildiz S, Gezer ED, Yildiz ÜC (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41(12):1762–1766CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thibaud Surini
    • 1
    Email author
  • Fatima Charrier
    • 2
  • Jérôme Malvestio
    • 3
  • Bertrand Charrier
    • 2
  • Amine Moubarik
    • 2
  • Patrick Castéra
    • 1
  • Stéphane Grelier
    • 4
  1. 1.INRA, Université Bordeaux 1, CNRS, UMR US2BTalence CedexFrance
  2. 2.Dpt SGMLaboratoire Sylvadour, IUT des Pays de l’AdourMont De MarsanFrance
  3. 3.CNRS, INRA, Université Bordeaux 1, UMR US2BTalence CedexFrance
  4. 4.Université Bordeaux 1, INRA, CNRS, UMR US2BTalence CedexFrance

Personalised recommendations