Wood Science and Technology

, Volume 46, Issue 1–3, pp 271–285 | Cite as

Production of hemicellulosic sugars from Pinus pinaster wood by sequential steps of aqueous extraction and acid hydrolysis

  • M. J. González-Muñoz
  • Rosana Alvarez
  • Valentín Santos
  • J. C. Parajó
Original

Abstract

Pinus pinaster wood samples were subjected to aqueous extraction at 130°C to remove extractives and to a sequential stage of hydrothermal processing under selected operational conditions to obtain hemicelluloses-free solids and liquors containing hemicelluloses-derived products (mainly oligomeric saccharides and monosaccharides). Liquors were separated from the media, supplemented with sulfuric acid (4%), and heated to cause the posthydrolysis of oligomeric saccharides to yield hemicellulosic sugars. The effects of the major operational conditions on the yields of the target products were assessed in selected experiments. The considered process enabled the recovery of hemicellulosic sugars (mannose, glucose, xylose, and galactose) at almost quantitative yields.

References

  1. Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47:1109–1112CrossRefGoogle Scholar
  2. Amidon TE, Shijie L (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550PubMedCrossRefGoogle Scholar
  3. Bajus M (2008) Biofuels second generation. Pet Coal 50:27–48Google Scholar
  4. Ballesteros I, Oliva JM, Navarro AA, Gonzalez A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84–86:97–110PubMedCrossRefGoogle Scholar
  5. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489PubMedCrossRefGoogle Scholar
  6. Boussaid A, Cai Y, Robinson J, Gregg DJ, Nguyen Q, Saddler JN (2001) Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark. Biotechnol Prog 17:887–892PubMedCrossRefGoogle Scholar
  7. Brasch DJ (1983) The chemistry of Pinus radiata. VI. The water-soluble galactoglucomannan. Aust J Chem 36:947–954CrossRefGoogle Scholar
  8. Briens C, Piskorz J, Berruti F (2008) Biomass valorization for fuel and chemicals production—a review. Int J Chem React Eng 6:R2Google Scholar
  9. Casebier RL, Hamilton JK, Hergert HL (1969) Chemistry and mechanism of water prehydrolysis of southern pine wood. TAPPI J 52:2369–2377Google Scholar
  10. Chandra RP, Ewanick SM, Chung PA, Au-Yeung K, Del Rio L, Mabee W, Saddler JN (2009) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222PubMedCrossRefGoogle Scholar
  11. Cheng S, Zhu S (2009) Lignocellulosic feedstock biorefinery—the future of the chemical and energy industry. BioResources 4:456–457Google Scholar
  12. Clark JH (2007) Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol 82:603–609CrossRefGoogle Scholar
  13. Ebringerova A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12CrossRefGoogle Scholar
  14. Ebringerova A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  15. Frederick WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K (2008) Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresour Technol 99:5051–5057PubMedCrossRefGoogle Scholar
  16. Gaiolas C, Duarte AP, Belgacem MN, Simoes R (2004) Determination of sugars content in Pinus pinaster and its corresponding polysaccharide complex and kraft pulps. Cellul Chem Technol 38:11–19Google Scholar
  17. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628PubMedCrossRefGoogle Scholar
  18. Garrote G, Parajó JC (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123CrossRefGoogle Scholar
  19. Garrote G, Domínguez H, Parajó JC (1999a) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109CrossRefGoogle Scholar
  20. Garrote G, Domínguez H, Parajó JC (1999b) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202CrossRefGoogle Scholar
  21. Garrote G, Domínguez H, Parajó JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578CrossRefGoogle Scholar
  22. Gupta S, Madan RN, Bansal MC (1987) Chemical composition of Pinus caribaea hemicellulose. TAPPI J 70:113–114Google Scholar
  23. Hoffmann GC, Timell TE (1970) Isolation and characterization of a galactoglucomannan from red pine (Pinus resinosa) wood. TAPPI J 53:1896–1899Google Scholar
  24. Jenkins T (2008) Toward a biobased economy: examples from the UK. Biofuels Bioprod Biorefin 2:133–143CrossRefGoogle Scholar
  25. Kamm B, Kamm M (2007) The concept of a biorefinery—production of platform chemicals and final products. Chem Eng Tech 79:592–603Google Scholar
  26. Kamm B, Schoenicke P, Kamm M (2009) Biorefining of green biomass—technical and energetic considerations. Clean Soil Air Water 37:27–30CrossRefGoogle Scholar
  27. Koell P, Lenhardt H (1987) Degradation of hemicellulose—rich biological materials with water in a flow reactor. Makromol Chem 188:749–762CrossRefGoogle Scholar
  28. Lee JY, Kim YC, Do GH, Cho NS (1984) Studies on the pinus species hemicellulose in Korea (II). Structures of xylan and glucomannan. Polpu, Chongi Gisul 16:3–9Google Scholar
  29. Leschinsky M, Zuckerstaetter G, Weber HK, Patt R, Sixta H (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: Influence of autohydrolysis intensity. Holzforschung 62:653–658CrossRefGoogle Scholar
  30. Lindblad MS, Liu Y, Albertsson AC, Ranucci E, Karlsson S (2002) Polymers from renewable resources. Adv Polym Sci 157:139–161CrossRefGoogle Scholar
  31. Marzialetti T, Valenzuela Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of loblolly pine: a comprehensive approach. Ind Eng Chem Res 47:7131–7140CrossRefGoogle Scholar
  32. Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenerg 25:301–308CrossRefGoogle Scholar
  33. Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664PubMedCrossRefGoogle Scholar
  34. Parajó JC, Vázquez D, Alonso JL, Santos V (1993) Optimization of catalysed acetosolv fractionation of pine wood. Holzforschung 47:188–196CrossRefGoogle Scholar
  35. Parajó JC, Santos V, Del Rio F (1995a) Hydrolysis of the hemicellulosic fraction of Pinus pinaster wood. I. Kinetics and product distribution at atmospheric pressure. Afinidad 52:162–169Google Scholar
  36. Parajó JC, Santos V, Del Rio F (1995b) Hydrolysis of the hemicellulosic fraction of Pinus pinaster wood. II. Production at higher pressures. Afinidad 52:267–274Google Scholar
  37. Richards GN, Whistler RL (1973) Isolation of two pure polysaccharides from the hemicellulose of slash pine (Pinus elliottii). Carbohydr Res 31:47–55CrossRefGoogle Scholar
  38. Sanders JPM, Annevelink B, van der Hoeven D (2009) The development of biocommodities and the role of North West European ports in biomass chains. Biofuels Bioprod Biorefin 3:395–409CrossRefGoogle Scholar
  39. Shahbazi A, Li Y, Mims MR (2005) Application of sequential aqueous steam treatments to the fractionation of softwood. Appl Biochem Biotechnol 121–124:973–987PubMedCrossRefGoogle Scholar
  40. Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 4:9200–9211CrossRefGoogle Scholar
  41. Tu M, Zhang X, Paice M, McFarlane P, Saddler JN (2009) Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol Prog 25:1122–1129PubMedCrossRefGoogle Scholar
  42. Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33:793–802CrossRefGoogle Scholar
  43. Vila C, Garrote G, Domínguez H, Parajó JC (2002) Hydrolytic processing of rice husks in aqueous media: a kinetic assessment. Collect Czech Chem Commun 67:509–530CrossRefGoogle Scholar
  44. Wigell A, Brelid H, Theliander H (2007a) Degradation/dissolution of softwood hemicellulose during alkaline cooking at different temperatures and alkali concentrations. Nord Pulp Pap Res J 22:488–494CrossRefGoogle Scholar
  45. Wigell A, Brelid H, Theliander H (2007b) Kinetic modelling of (galacto) glucomannan degradation during alkaline cooking of softwood. Nord Pulp Pap Res J 22:495–499CrossRefGoogle Scholar
  46. Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210CrossRefGoogle Scholar
  47. Yañez R, Romaní A, Garrote G, Alonso JL, Parajó JC (2009) Processing of Acacia dealbata in aqueous media: a first step of wood biorefinery. Ind Eng Chem Res 48:6618–6626CrossRefGoogle Scholar
  48. Yoon SH, Macewan K, Van Heiningen A (2008) Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery. TAPPI J 7:27–32Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. J. González-Muñoz
    • 1
    • 2
  • Rosana Alvarez
    • 3
    • 4
  • Valentín Santos
    • 1
    • 2
  • J. C. Parajó
    • 1
    • 2
  1. 1.Department of Chemical Engineering, Polytechnical BuildingUniversity of Vigo (Campus Ourense), As LagoasOurenseSpain
  2. 2.CITI-University of Vigo-Tecnopole, San Ciprián de ViñasOurenseSpain
  3. 3.Department of Organic Chemistry, Faculty of ChemistryUniversity of Vigo, Lagoas-MarcosendeVigoSpain
  4. 4.Department of Organic Chemistry, Faculty of ChemistryUniversity of Vigo, Spain (Campus Ourense), As LagoasOurenseSpain

Personalised recommendations