Wood Science and Technology

, Volume 45, Issue 4, pp 719–733 | Cite as

Preparation of synthetic wood composites using ionic liquids

  • Trevor J. Simmons
  • Sang Hyun Lee
  • Jianjun Miao
  • Minoru Miyauchi
  • Tae-Joon Park
  • Shyam S. Bale
  • Ravi Pangule
  • Justin Bult
  • Jeffrey G. Martin
  • Jonathan S. Dordick
  • Robert J. Linhardt
Original

Abstract

Synthetic wood composite films containing cellulose, hemicelluloses, and lignin, the three major components of natural wood, were prepared in a room temperature ionic liquid solvent, 1-ethyl-3-methylimidazolium acetate, [EMIM][Ac]. Various synthetic wood composites were obtained by dissolution of individual wood components together with additives, including polyethylene glycol (PEG), chitosan, and multi-wall carbon nanotubes (MWNTs) in [EMIM][Ac]. The addition of water affords a gel that was dried in either a low humidity environment or under vacuum. Synthetic wood films showed smoother surface textures, higher water resistance, and higher tensile strengths than cellulose films formed by the same methods. Tailor-made synthetic wood composites were also prepared having a variety of desirable properties, including antimicrobial activities, controlled hydro-phobicity/philicity, high relative dielectric constant, and a high degree of cohesiveness.

Supplementary material

226_2010_395_MOESM1_ESM.doc (44 kb)
HPLC results for standard glucose, xylose, and hydrolyzed synthetic wood film. UV–Vis for lignin content in acidic aqueous solution (DOC 44 kb)

References

  1. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  2. Bartkowiak M, Zakrzewski R (2004) Thermal degradation of lignins isolated from wood. J Therm Anal Calorim 77:295–304CrossRefGoogle Scholar
  3. Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part A Polym Chem 42:487–495CrossRefGoogle Scholar
  4. Chandra RP, Bura R, Mabee WE, Berlin A, Pan B, Saddler JN (2007) Biofuels book series. Adv Biochem Eng Biotechnol 108:67–93PubMedGoogle Scholar
  5. Chanzy H, Peguy A, Chaunis S, Monzie P (2003) Oriented cellulose films and fibers from a mesophase system. J Polym Sci Polym Phys 18:1137–1144Google Scholar
  6. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. Phys Org Chem 18:275–297CrossRefGoogle Scholar
  7. Davé V, Glasser WG (1997) Cellulose-based fibres from liquid crystalline solutions: 5. Processing and morphology of CAB blends with lignin. Polymer 38:2121–2126CrossRefGoogle Scholar
  8. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317PubMedCrossRefGoogle Scholar
  9. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N, N-Dimethylacetamide solvent system. Biomacromolecules 8:2629–2647PubMedCrossRefGoogle Scholar
  10. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRefGoogle Scholar
  11. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formats. Biomacromolecules 7:3295–3297PubMedCrossRefGoogle Scholar
  12. Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicelluloses. Appl Polym Sci 69:1661–1667CrossRefGoogle Scholar
  13. Goksu EI, Karamanlioglu H, Bakir U, Yilma L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. Agric Food Chem 55:10685–10691CrossRefGoogle Scholar
  14. Himmel ME, Ding S-Y, Johnson DK, Andey WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRefGoogle Scholar
  15. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Agrgyropoulos DS (2007) Dissolution of wood in ionic liquids. Agric Food Chem 55:9142–9148CrossRefGoogle Scholar
  16. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRefGoogle Scholar
  17. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376PubMedCrossRefGoogle Scholar
  18. Lee SH, Miyauchi M, Dordick JS, Linhardt RJ (2010) Preparation of biopolymer-based materials using ionic liquids for the biomedical applications. In: ACS symposium series ionic liquids application: pharmaceutical, therapeutics, and biotechnology 1038:115–134Google Scholar
  19. Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocelluloses. Green Chem 10:177–182CrossRefGoogle Scholar
  20. Möller H, Grelier S, Pardon P, Coma V (2004) Antimicrobial and physicochemical properties of chitosan–HPMC-based films. J Agric Food Chem 52:6585–6591PubMedCrossRefGoogle Scholar
  21. Novoselov NP, Sashina ES, Kuz’mina OG, Troshenkova SV (2007) Ionic liquids and their use for the dissolution of natural polymers. J Gen Chem 77:1395–1405CrossRefGoogle Scholar
  22. Pushparaj VL, Manikoth SM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible nanocomposite thin film energy storage devices. Proc Natl Acad Sci 104:13574–13577PubMedCrossRefGoogle Scholar
  23. Saha BC (2003) Hemicellulose bioconversion. Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  24. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151CrossRefGoogle Scholar
  25. Šimkovic I (2008) What could be greener than composites made from polysaccharides? Carbohydr Polym 74:759–762CrossRefGoogle Scholar
  26. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar
  27. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Hemicellulose bioconversion. J Am Chem Soc 124:4974–4975PubMedCrossRefGoogle Scholar
  28. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78CrossRefGoogle Scholar
  29. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMedCrossRefGoogle Scholar
  30. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574PubMedCrossRefGoogle Scholar
  31. Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47:1096–1101CrossRefGoogle Scholar
  32. Zhao H, Baker BA, Song ZY, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705CrossRefGoogle Scholar
  33. Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009a) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16:217–226CrossRefGoogle Scholar
  34. Zhao X, Koos AA, Chu BTT, Johnston C, Grobert N, Grant PS (2009b) Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon 47:561–569CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Trevor J. Simmons
    • 1
    • 2
    • 3
  • Sang Hyun Lee
    • 4
    • 5
  • Jianjun Miao
    • 3
    • 5
    • 6
  • Minoru Miyauchi
    • 3
  • Tae-Joon Park
    • 5
  • Shyam S. Bale
    • 1
  • Ravi Pangule
    • 5
  • Justin Bult
    • 3
    • 7
  • Jeffrey G. Martin
    • 1
    • 5
  • Jonathan S. Dordick
    • 1
    • 3
    • 6
    • 8
  • Robert J. Linhardt
    • 1
    • 3
    • 5
    • 6
    • 8
  1. 1.Department of Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Coordinación para la Innovación y la Aplicación de la Ciencia y TecnologíaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Rensselaer NanocenterRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Microbial EngineeringUniversity of KonkukSeoulKorea
  5. 5.Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA
  6. 6.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  7. 7.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  8. 8.Department of BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations