Wood Science and Technology

, Volume 45, Issue 2, pp 359–368

Improved bondability of wax-treated wood following plasma treatment

  • Georg Avramidis
  • Gunthard Scholz
  • Evelyn Nothnick
  • Holger Militz
  • Wolfgang Viöl
  • Arndt Wolkenhauer


In this study, the impact of a plasma treatment using dielectric barrier discharge at atmospheric pressure on wax-treated beech was investigated by surface energy determination and adhesion tests. Measurements of the surface energy revealed a strong increase in surface polarity along with increased surface energy as a result of the plasma treatment, pointing to increased adhesion properties. To evaluate the adhesion properties of a polyvinyl acetate (PVAc) adhesive on beech treated with montan ester wax and synthetic Fischer–Tropsch wax, a special peel test was applied. This peel test provided evidence of increased adhesion of the PVAc after plasma treatment of both materials investigated.


  1. Banks WB (1973) Water uptake by Scots pine sapwood and its restriction by the use of water repellents. Wood Sci Technol 7:271–284CrossRefGoogle Scholar
  2. Chan CM (1994) Polymer surface modification and characterization. Carl Hanser Verlag, MunichGoogle Scholar
  3. Christiansen AW (1990) How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: a critical review of the literature, part 1, physical response. Wood Fiber Sci 22:441–459Google Scholar
  4. Custódio J, Broughton J, Cruz H, Winfield P (2009) Activation of timber surfaces by flame and corona treatments to improve adhesion. Int J Adhes Adhes 29:167–172CrossRefGoogle Scholar
  5. Donath S, Militz H, Mai C (2006a) Creating water repellent effects on wood by treatment with silanes. Holzforschung 60:40–46CrossRefGoogle Scholar
  6. Donath S, Militz H, Mai C (2006b) Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60:210–216CrossRefGoogle Scholar
  7. Donath S, Militz H, Mai C (2007) Weathering of silane treated wood. Holz Roh Werkst 65:35–42CrossRefGoogle Scholar
  8. Evans PD, Ramos M, Senden T (2007) Modification of wood using a glow-discharge plasma derived from water. In: Hill CAS, Jones D, Militz H, Ormondroyd GA (eds) Proceedings of the third European conference on wood modification. Biocomposites Centre, University of Wales, Bangor, pp 123–132Google Scholar
  9. Hippler R, Pfau S, Schmidt M, Schoenbach KH (2004) Low temperature plasma physics. Wiley-VCH, BerlinGoogle Scholar
  10. Illmann G, Schmidt H, Brotz W, Michalczyk G, Payer W, Dietsche W, Hohner G, Wildgruber J (1983) Wachse. In: Ullmanns Enzyklopädie der technischen Chemie, 4th edn, vol 24, Wiley-VCH, Weinheim, pp 1–49Google Scholar
  11. Klarhöfer L, Frerichs M, Maus-Friedrichs M, Kempter V, Viöl, W (2005) Investigation of pure and plasma treated spruce with surface analytical techniques. In: Proceedings of the second European conference on wood modification, Göttingen, Germany, pp 339–345Google Scholar
  12. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics and industrial applications. Plasma Chem Plasma Process 23:1–46CrossRefGoogle Scholar
  13. Kurt R, Krause A, Militz H, Mai C (2008) Hydroxymethylated resorcinol (HMR) priming agent for improved bondability of wax-treated wood. Holz Roh Werkst 66:333–338CrossRefGoogle Scholar
  14. Lecoq E, Clement F, Panousis E, Loiseau JF, Held B, Castetbon A, Guimon C (2008) Pinus pinaster surface treatment realized in spatial and temporal afterglow DBD conditions. Eur Phys J Appl Phys 42:47–53CrossRefGoogle Scholar
  15. Mai C, Militz H (2004) Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review. Wood Sci Technol 37:339–348CrossRefGoogle Scholar
  16. Militz H, Mai C, Ghosh SC (2008) Combined effect of hydrophobation and durability improvement of wood treated with silicone emulsions. Cost action E37 final conference in Bordeaux. Socio-economic perspectives of treated wood for the common European market, pp 31–39Google Scholar
  17. Odrásková M, Ráhel J, Zahoranová A, Tino R (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 28:203–211CrossRefGoogle Scholar
  18. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741CrossRefGoogle Scholar
  19. Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111CrossRefGoogle Scholar
  20. Rehn P, Wolkenhauer A, Bente M, Förster S, Viöl W (2003) Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf Coat Technol 174–175:515–518CrossRefGoogle Scholar
  21. Sernek M (2002) Comparative analysis of inactivated wood surfaces. PhD thesis, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  22. Strobel M, Lyons CS, Mittal KL (1994) Plasma surface modification of polymers: relevance to adhesion. VSP, UtrechtGoogle Scholar
  23. Topala I, Dumitrascu N (2007) Dynamics of the wetting process on dielectric barrier discharge (DBD)-treated wood surfaces. J Adhes Sci Technol 21:1089–1096CrossRefGoogle Scholar
  24. Wolkenhauer A, Militz H, Viöl W (2008a) Increased PVA-glue adhesion on particle board and fibre board by plasma treatment. Holz Roh Werkst 66:143–145CrossRefGoogle Scholar
  25. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2008b) Plasma treatment of wood-plastic composites to enhance their adhesion properties. J Adhes Sci Technol 22:2025–2037CrossRefGoogle Scholar
  26. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008c) Plasma treatment of heat treated beech wood—investigation on surface free energy. Holzforschung 62:472–474CrossRefGoogle Scholar
  27. Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials by dielectric barrier discharge at atmospheric pressure. Sierke, GöttingenGoogle Scholar
  28. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29:18–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Georg Avramidis
    • 1
  • Gunthard Scholz
    • 2
  • Evelyn Nothnick
    • 1
  • Holger Militz
    • 2
  • Wolfgang Viöl
    • 1
    • 3
  • Arndt Wolkenhauer
    • 1
  1. 1.Faculty of Natural Sciences and TechnologyUniversity of Applied Sciences and ArtsGöttingenGermany
  2. 2.Department of Wood Biology and Wood ProductsGeorg-August-University of GöttingenGöttingenGermany
  3. 3.Laser-Laboratorium Göttingen e.V.GöttingenGermany

Personalised recommendations