Wood Science and Technology

, Volume 43, Issue 1–2, pp 85–95 | Cite as

Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood

  • Roberto A. Sá
  • Francis S. Gomes
  • Thiago H. Napoleão
  • Nataly D. L. Santos
  • Carla M. L. Melo
  • Norma B. Gusmão
  • Luana C. B. B. Coelho
  • Patrícia M. G. PaivaEmail author
  • Lothar W. Bieber


The aim of this work was to isolate a lectin from Myracrodruon urundeuva heartwood and to evaluate its antimicrobial activity against bacteria and fungi that attack plants, including woods. The lectin was isolated from heartwood through affinity chromatography on a chitin column monitored by hemagglutination assay. The lectin inhibited Gram-negative and Gram-positive bacteria and was more effective than antifungal Cercobin in growth inhibition of phytopathogenic fungi. The detected antimicrobial activity reveals the possible role of the lectin in the resistance of M. urundeuva heartwood against deteriorative biological agents. The M. urundeuva lectin is the first bioactive peptide found in heartwood, probably stored as a chemical protection against biodegradation.


Minimal Inhibitory Concentration Fusarium Antifungal Activity Colony Form Unit Ammonium Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Colony forming units


40–60% fraction


Hemagglutinating activity


Minimal agglutinating concentration


Minimal bactericide concentration


Minimal inhibitory concentration


Nutrient Agar medium


Nutrient Broth medium


Specific hemagglutinating activity


Yeast nitrogen base medium



The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for research grants. Authors are deeply grateful to Maria Barbosa Reis da Silva (for the technical assistance) and to Msc. Gonçalo Mendes da Conceição (for the identification of the botanical material).


  1. Bauer AW, Kirby WMM, Sherrie JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496PubMedGoogle Scholar
  2. Ciopraga J, Gozia O, Tudor R, Brezuica L, Doyle RJ (1999) Fusarium sp. growth inhibition by wheat germ agglutinin. Biochim Biophys Acta 1428:424–432PubMedGoogle Scholar
  3. Clausen CA (1995) Bacterial associations with decaying wood: a review. Int Biodeterior Biodegradation 37:101–107Google Scholar
  4. Cother EJ, Dowling V (1986) Bacteria associated with internal breakdown of onion bulbs and their role in disease expression. Plant Pathol 35:329–336Google Scholar
  5. Courvalin P, Goldstein F, Philippon A, Sirot J (1988) L’antibiogramme. MPC Vigot, ParisGoogle Scholar
  6. Cunico MM, Carvalho JLS, Silva VC, Montrucchio DP, Kerber VA, Grigoletti Júnior A, Auer CG, Miguel MD, Miguel OG (2004) Avaliação antifúngica de extratos obtidos de Ottonia martiana Miq. (Piperaceae) sobre três fitopatógenos. Arq Inst Biol 71:141–143Google Scholar
  7. Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325Google Scholar
  8. Fakhoury AM, Woloshuk CP (2001) Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Mol Plant Microbe Interact 14:955–961PubMedGoogle Scholar
  9. Freire MGM, Gomes VM, Corsini RE, Machado OLT, De Simone SG, Novello JC, Marangoni S, Macedo MLR (2002) Isolation and partial characterization of a novel lectin from Talisia esculenta seeds that interferes with fungal growth. Plant Physiol Biochem 40:61–68CrossRefGoogle Scholar
  10. Gaidamashvili M, van Staden J (2002) Interaction of lectin-like proteins of South African medicinal plants with Staphylococcus aureus and Bacillus subtilis. J Ethnopharmacol 80:131–135PubMedGoogle Scholar
  11. Gozia O, Ciopraga J, Bentia T, Lungu M, Zamfirescu I, Tudor R, Roseanu A, Nitu F (1993) Antifungal properties of lectin and new chitinases from potato tubers. C R Acad Sci III 316:788–792PubMedGoogle Scholar
  12. Huang X, Xie WJ, Gong ZZ (2000) Characterization and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478:123–126PubMedGoogle Scholar
  13. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265CrossRefGoogle Scholar
  14. Khan MR, Olomoso AD, Barewai Y (2006) Antimicrobial activity of the Maniltoa schefferi extracts. Fitoterapia 77:324–326PubMedGoogle Scholar
  15. Lam YM, Wang HX, Ng TB (2000) A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem Biophys Res Commun 279:74–80PubMedGoogle Scholar
  16. Lis H, Sharon N (1981) Lectins in higher plants. In: Marcus A (ed) The biochemistry of plants: a comprehensive treatise, vol. 6. Academic Press, New York, pp 371–447Google Scholar
  17. Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  18. Mainieri C, Chimelo JP (1989) Fichas de características de madeiras brasileiras. IPT, São PauloGoogle Scholar
  19. Morais SAL, Nascimento EA, Queiroz CRAA (1999) Studies on polyphenols of Myracrodruon urundeuva wood. J Braz Chem Soc 10:447–452Google Scholar
  20. Oliveira MDL, Andrade CAS, Santos-Magalhães NS, Coelho LCBB, Teixeira JA, Carneiro-da-Cunha MG, Correia MTS (2008) Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett Appl Microb 46:371–376CrossRefGoogle Scholar
  21. Omar S, Lemonnier B, Jones N, Ficker C, Smith ML, Neema C, Towers GHN, Goel K, Arnason JT (2000) Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. J Ethnopharmacol 73:161–170PubMedGoogle Scholar
  22. Ordóñez RM, Ordóñez AAL, Sayago JE, Moreno MIN, Isla MI (2006) Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Peptides 27:1187–1191PubMedCrossRefGoogle Scholar
  23. Paiva PMG, Coelho LCBB (1992) Purification and partial characterization of two lectin isoforms from Cratylia mollis Mart. (camaratu bean). Appl Biochem Biotechnol 36:113–118CrossRefGoogle Scholar
  24. Paes JB, Morais VM, Lima CR (2002) Resistência das madeiras de aroeira (Myracrodruon urundeuva), cássia (Senna siamea) e ipê (Tabebuia impetiginosa) a fungos e cupins xilófagos em condições de laboratório. Flor Amb 9:135–144Google Scholar
  25. Ratanapo S, Ngamjunyaporn W, Chulavatnatol M (2001) Interaction of a mulberry leaf lectin with a phytopathogenic bacterium, P. syringae pv mori. Plant Sci 160:739–744PubMedCrossRefGoogle Scholar
  26. Santos AFS, Argolo ACC, Coelho LCBB, Paiva PMG (2005) Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Res 39:975–980PubMedGoogle Scholar
  27. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894PubMedGoogle Scholar
  28. Silva AC (2002) Madeiras da Amazônia: características gerais, nome vulgar e usos. Sebrae, ManausGoogle Scholar
  29. Tasumi S, Yang W, Usami T, Tsutsui S, Ohira T, Kawazoe I, Wilder MN, Aida K, Suzuki Y (2004) Characteristics and primary structure of galectin in the skin mucus of the Japanese eel, Anguilla japonica. Dev Comp Immunol 28:325–335PubMedGoogle Scholar
  30. Trindade MB, Lopes JLS, Soares-Costa A, Monteiro-Moreira AC, Moreira RA, Oliva MLV, Beltramini LM (2006) Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity. Biochim Biophys Acta 1764:146–152PubMedGoogle Scholar
  31. Van Damme EJM, Willems P, Torrekens S, Van Leuven F, Peumans WJ (1993) Garlic (Allium sativum) chitinases: characterization and molecular cloning. Physiol Plant 87:177–186Google Scholar
  32. Van den Bergh KP, Rouge P, Proost P, Coosemans J, Krouglova T, Engelborghs Y, Peumans WJ, Van Damme EJ (2004) Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Planta 219:221–232PubMedGoogle Scholar
  33. Vergauwen R, Van Leuven F, Van Laere A (1998) Purification and characterization of strongly chitin-binding chitinase from salicylic acid-treated leek (Allium porrum). Physiol Plant 104:175–182Google Scholar
  34. Wang X, Bunkers GJ (2000) Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Biochem Biophys Res Commun 279:669–673PubMedCrossRefGoogle Scholar
  35. Wang HX, Ng TB (2003) Purification of castamollin, a novel antifungal protein from chinese chestnuts. Protein Expr Purif 32:44–51PubMedCrossRefGoogle Scholar
  36. Ye XY, Ng TB (2002) A new antifungal protein and a chitinase with prominent macrophage-stimulating activity from seeds of Phaseolus vulgaris cv. pinto. Biochem Biophys Res Commun 290:813–819PubMedGoogle Scholar
  37. Ye X, Ng TB (2005) A chitinase with antifungal activity from the mung bean. Protein Expr Purif 40:230–236PubMedGoogle Scholar
  38. Ye XY, Wang HX, Ng TB (2000) Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem Biophys Res Commun 269:155–159PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Roberto A. Sá
    • 1
  • Francis S. Gomes
    • 2
  • Thiago H. Napoleão
    • 2
  • Nataly D. L. Santos
    • 2
  • Carla M. L. Melo
    • 3
  • Norma B. Gusmão
    • 3
  • Luana C. B. B. Coelho
    • 2
  • Patrícia M. G. Paiva
    • 2
    Email author
  • Lothar W. Bieber
    • 1
  1. 1.Departamento de Química Fundamental, CCENUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Bioquímica, CCBUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de Antibióticos, CCBUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations