Wood Science and Technology

, Volume 42, Issue 8, pp 633–647 | Cite as

Three-dimensional elastic behaviour of common yew and Norway spruce

Original

Abstract

In view of its high density, yew wood has a remarkably low longitudinal Young’s modulus, which makes it unique among coniferous woods. However, the elastic response of yew related to other load directions is largely unknown. Therefore, our goal was to comprehensively characterise the three-dimensional elastic behaviour of yew wood. To achieve this, we performed tensile tests on dog-bone-shaped yew specimens and determined the three Young’s moduli and six Poisson’s ratios using a universal testing machine and a digital image correlation technique. All tests were also applied to spruce as reference species. After including the shear moduli determined in a prior study by our group, all elastic engineering parameters of yew and spruce were ascertained. Based on these values, the three-dimensional elastic behaviour was describable with deformation bodies and polar diagrams. Evaluating these illustrations revealed that yew had a lower stiffness only in the longitudinal direction. In all other three-dimensional directions, spruce was clearly more compliant than yew. Particularly, in the radial–tangential plane, both species varied largely in their degree of anisotropic elasticity. All mentioned differences between yew and spruce originate at the microstructural level.

Notes

Acknowledgments

This work was supported by the European Cooperation in the field of Scientific and Technical Research (COST, Action E35).

References

  1. Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar, p 712Google Scholar
  2. Burgert I (2000) Die mechanische Bedeutung der Holzstrahlen im lebenden Baum. Dissertation, Hamburg, p 173Google Scholar
  3. Carrington H (1923) The elastic constants of spruce. Philos Mag 45:1055–1057Google Scholar
  4. Grimsel M (1999) Mechanisches Verhalten von Holz: Struktur- und Parameteridentifikation eines anisotropen Werkstoffes. Dissertation, Dresden, p 89Google Scholar
  5. Hörig H (1933) Zur Elastizität des Fichtenholzes. 1. Folgerungen aus Messungen von H. Carrington an Spruce. Z Tech Phys 12:369–379Google Scholar
  6. Jakubczyk B (1966) Technical properties of the yew wood from the preserve Wierzchlas. Sylwan 10:79–86Google Scholar
  7. Keunecke D, Märki C, Niemz P (2007a) Structural and mechanical properties of yew wood. Wood Res 52:23–38Google Scholar
  8. Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007b) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRefGoogle Scholar
  9. Keunecke D, Stanzl-Tschegg S, Niemz P (2007c) Fracture characterization of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial–tangential and tangential–radial crack propagation system by a micro wedge splitting test. Holzforschung 61:582–588CrossRefGoogle Scholar
  10. Krabbe E (1960) Messungen von Gleit- und Dehnungszahlen an Holzstäbchen mit rechteckigen Querschnitten. Dissertation, Hannover, p 106Google Scholar
  11. Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Dissertation, Bochum, p 162Google Scholar
  12. Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A Phys Condens Matter Struct Defects Mech Properties 79(9):2173–2184Google Scholar
  13. Schlüter R (1932) Elastische Messungen an Fichtenholz. Dissertation, Braunschweig, p 56Google Scholar
  14. Sekhar AC, Sharma RS (1959) A note on mechanical properties of Taxus baccata. Indian Forest 85:324–326Google Scholar
  15. Voigt W (1928) Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig, p 960Google Scholar
  16. Wagenführ R (2000) Holzatlas. Fachbuchverlag Leipzig, München, p 707Google Scholar
  17. Wommelsdorff O (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Hannover, p 100Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Building Materials (Wood Physics Group)ETH ZurichZurichSwitzerland

Personalised recommendations