Advertisement

Wood Science and Technology

, 41:673 | Cite as

Chemical, anatomical and technological properties of Snakewood [Brosimum guianense (Aubl.) Huber]

  • Gunthard Scholz
  • Falk Liebner
  • Gerald Koch
  • Claus-Thomas Bues
  • Björn Günther
  • Ernst Bäucker
Original

Abstract

The very decorative heartwood of Brosimum guianense is internationally well known. Snakewood, as it is colloquially known, is represented in wood databases (e.g. the DELTA or InsideWood) as well as in lists of commercial timbers of many timber trading companies. The very decorative heartwood is hardly available and gains prices of up to 25 €/kg in form of half stems. In the present study, the chemical composition and especially the subcellular cell structure was analysed by means of UV microspectrophotometry to explain the high natural durability and some extraordinary physical properties in addition to the anatomical composition. The heartwood consists of approximately 39% lignin, 54% carbohydrates and 0.4% lipophilic compounds of unspecified origin. The fibres are very thick-walled. Numerous sclerotic tyloses and organic deposits are present in the vessel. The extractives in high content are also components of parenchyma cells as well as in tyloses, respectively. These detected phenolic extractives, partly of flavonoid character, are also part of the cell wall. Calcium oxalate crystals are deposited in the upright and square cells of rays and sporadically in axial parenchyma cells. These facts are reasons for the famous natural durability of Snakewood. The sapwood density ranges from 1.1 to 1.4 g/cm3 for heartwood (12% mc). The compression strength (119 N/mm2), the bending strength (241 N/mm2), the modulus of elasticity (23,200 N/mm2) and the hardness (196 N/mm2) indicate exceedingly high elastomechanical properties.

Keywords

Lignin Total Peak Area High Lignin Content Compound Middle Lamella Syringol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersch K, Spitzer R (2005) Orientierende Untersuchungen zur Ökologie, ausgewählten Holzeigenschaften und Verwendungspotentialen des Jaguarbaumes (Brosimum guianense) aus Guyana. Diplomarbeit, Technische Universität Dresden, Professur für Forstnutzung, No. 206 (unpublished)Google Scholar
  2. Begemann HF (1966) Lexikon der Nutzhölzer. Band III, Holz-Verlag GmbH, MeringGoogle Scholar
  3. Britt PF, Buchanan AC, Cooney MJ, Martineau DR (2000) Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Org Chem 65/5:1376–1389CrossRefGoogle Scholar
  4. DIN 52 182 (1976) Prüfung von Holz. Bestimmung der Rohdichte. Beuth Verlag GmbH, 10772 BerlinGoogle Scholar
  5. Din 52 184 (1979) Prüfung von Holz. Bestimmung der Quellung und Schwindung. Beuth Verlag GmbH, BerlinGoogle Scholar
  6. Din 52 185 (1976) Prüfung von Holz. Bestimmung der Druckfestigkeit parallel zur Faser. Beuth Verlag GmbH, BerlinGoogle Scholar
  7. Din 52 186 (1978) Prüfung von Holz. Biegeversuch. Beuth Verlag GmbH, BerlinGoogle Scholar
  8. DIN EN 1534 (2000) Parkett und andere Holzfußböden: Bestimmung des Eindruckwiderstandes (BRINELL). Prüfmethode. Deutsche Fassung EN 1534-3:2000, Beuth Verlag GmbH, BerlinGoogle Scholar
  9. Fergus BI, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117CrossRefGoogle Scholar
  10. Harzmann LJ (1988) Kurzer Grundriss der allgemeinen Tropenholzkunde. S. Hirzel Verlag, LeipzigGoogle Scholar
  11. InsideWood (2004) onwards. Published on the Internet http://www.insidewood/lib.ncsu.edu/search/index.cfm?e=fulldescription&q=3161
  12. Kleen M (1993) Characterization of wood and pulp using analytical pyrolysis and multivariate data analysis. Doctoral thesis, Royal Institute of Technology, Department of Wood Chemistry, StockholmGoogle Scholar
  13. Kleist G, Schmitt U (1999) Evidence of accessory components in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh- Werkst 57:93–95CrossRefGoogle Scholar
  14. Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U (ed) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 119–130Google Scholar
  15. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractivesin plant cell walls. Holzforschung 55:563–567CrossRefGoogle Scholar
  16. Koch G, Richter HG, Schmitt U (2006) Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60/6:583–588CrossRefGoogle Scholar
  17. Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. 1. Band, 2. neu bearbeitete und erweiterte Auflage. Springer, BerlinGoogle Scholar
  18. Lohmann U (1991) Holz-Handbuch. 4., völlig überarbeitete Auflage. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-EchterdingenGoogle Scholar
  19. Lorenzi H (2002) Árvores brasileiras. Manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol. 02. 2a edição, Instituto Plantarum de Estudos da Flora Ltda, Nova OdessaGoogle Scholar
  20. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-EchterdingenGoogle Scholar
  21. Record SJ, Mell CD (1924) Timbers of tropical america. Yale University Press, New HavenGoogle Scholar
  22. Richter HG, Dallwitz MJ (2000) Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German and Spanish, Version: 4th May 2000, http://www.biodiversity.uno.edu/delta/
  23. Richter HG, Trockenbrodt M (1999) Kommentierte Merkmalsliste für die Holzartenbestimmung. Bearbeitung und Übersetzung von IAWA list of microscopic features for hardwood identification. 1993, Bundesforschungsanstalt für Forst- und Holzwirtschaft, HamburgGoogle Scholar
  24. Scholz G (2005) Untersuchungen der Holzarten Prosopis kuntzei Harms. und Schinopsis cornuta Loes. aus dem paraguayischen Chaco. Diplomarbeit, Technische Universität Dresden, Professur für Forstnutzung (unpublished)Google Scholar
  25. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastructure Res 26:31–43CrossRefGoogle Scholar
  26. Wagenführ R (1989) Anatomie des Holzes. 4., neu bearbeitete Auflage, VEB Fachbuchverlag Leipzig, p 320Google Scholar
  27. Zander R (2002) Handwörterbuch der Pflanzennamen. 17. Auflage, Verlag Eugen Ulmer, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gunthard Scholz
    • 1
  • Falk Liebner
    • 2
  • Gerald Koch
    • 3
  • Claus-Thomas Bues
    • 4
  • Björn Günther
    • 4
  • Ernst Bäucker
    • 4
  1. 1.Institut für Holzbiologie und HolztechnologieGöttingenGermany
  2. 2.Department of Organic ChemistryUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Federal Research Centre for Forestry and Forest ProductsInstitute for Wood Biology and Wood ProtectionHamburgGermany
  4. 4.Chair of Forest Utilization and Forest TechnologyDresden University of TechnologyTharandtGermany

Personalised recommendations