Advertisement

Radial variation of vessel size and distribution in cork oak wood (Quercus suber L.)

  • Sofia Leal
  • Vicelina B. Sousa
  • Helena PereiraEmail author
ORIGINAL

Abstract

Quercus suber L. is an important species producing cork whose wood characteristics have not been investigated a lot. Cork oak wood vessels are a striking feature and the most abundant wood tissue largely influencing density and permeability. Vessel size and distribution were studied in approximately 40 year-old and never debarked cork oaks by continuously measuring along the radial direction in the transverse section of wood discs taken at 1.3 m of height using image analysis techniques. The vessel size increases with age from 7660 ± 2286 to 21136 ± 6119 μm2, the conductive area from 5.4 ± 2.2 to 11.6 ± 3.9%, and the vessel density remains approximately constant between 5.2 ± 1.5 and 7.3 ± 3.5 vessels/mm2. In comparison with ring-porous and some evergreen oaks, cork oaks show a similar conductive area but smaller vessels. Vessel architecture is known to play an important role on oaks tolerance to hydric stress, and these cork oak trees were growing under very harsh edaphoclimatic conditions, not tolerated by other oaks. The well-developed and deep root system allowing access to constant water supply may contribute to the cork oak’s relatively high conductive area.

Keywords

Wood Density Vessel Size Vessel Area Conductive Area Wood Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study is part of the European project Suberwood (QLRT 2000-0701). The first author acknowledges additional funding granted by the Portuguese Science Foundation (FCT) under the programme POCI – 2010 Formação Avançada para a CiênciaMedida IV.3. We wish to thank Sofia Knapič and Joana Paulo for providing help during the fieldwork.

References

  1. Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238PubMedGoogle Scholar
  2. Baas P (1982) Systematic, phylogenetic, and ecological wood anatomy – history and perspectives. In: Baas P (ed) New perspectives in wood anatomy. Martinus Nijhoff/Dr. W. Junk Publ, Hague, pp 23–58Google Scholar
  3. Barij N, Stokes A, Cermak J (2004) Influence of xylem anatomy on water efficiency through stems: xylem structure in stems of Quercus suber. In: International symposium on wood sciences, 24–29 Oct. 2004, Montpellier, pp 5Google Scholar
  4. Borghetti M, De Angelis P, Raschi A, Scarascia Mugnozza G, Valentini R (1992) Relations between sap velocity and cavitation in broadleaved trees. In: Borghetti M, Raschi A, Grace J (eds) Global changes and plant water relations. Cambridge University Press, Cambridge, pp 114–128Google Scholar
  5. Butterfield BG (2003) Wood anatomy in relation to wood quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 30–49Google Scholar
  6. Carlquist S (1984) Wood and stem anatomy of Lardizabalaceae, with comments on the vinning habitat, ecology and systematics. Bot J Linn Soc 88:257–277Google Scholar
  7. Carlquist S (1988) Comparative Wood Anatomy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Carvalho A (1953) Madeiras de Folhosas – Contribuição para o seu Estudo e Identificação. Graduation Thesis, Instituto Superior de Agronomia, LisboaGoogle Scholar
  9. Carvalho A (1997) Madeiras Portuguesas – Estrutura Anatómica, Propriedades e Utilizações. Vol II, Direcção-Geral das Florestas, LisboaGoogle Scholar
  10. Costa A, Pereira H, Oliveira A (2001) Dendroclimatological approach to diameter growth in cork oak adult trees under cork production. Trees 15:438–443CrossRefGoogle Scholar
  11. Costa A, Pereira H, Oliveira A (2002) Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann For Sci 59:429–437CrossRefGoogle Scholar
  12. Coutinho AXP (1886) Curso de Silvicultura – 1 Botânica Florestal, Typografia da Academia Real das Sciencias de Lisboa, LisboaGoogle Scholar
  13. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2006) Water use strategies in two co-ocurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol (in press)Google Scholar
  14. Eckstein D, Frisse E (1979) Environmental influences on the vessel size of beech and oak. IAWA Bull 2/3:36–37Google Scholar
  15. Faria T, García-Plazaola JI, Abadía A, Cerasoli S, Pereira JS, Chaves MM (1996) Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber L.) during summer. Tree Physiol 16: 115–125PubMedGoogle Scholar
  16. Ferreira A, Lopes F, Pereira H (2000) Caractérisation de la croissance et de la qualité du liège dans une région de production. Ann For Sci 57:187–193CrossRefGoogle Scholar
  17. Gaio FVL (1951) A Madeira de Sobreiro na Produção da Celulose Industrial, Graduation Thesis, Instituto Superior de Agronomia, LisboaGoogle Scholar
  18. García-Esteban L, Guíndeo-Casasús A (1989) Anatomía de las Maderas Afrondosas Españolas, AITIM, MadridGoogle Scholar
  19. García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504Google Scholar
  20. Gasson P (1987) Some implications of anatomical variations in wood of pedunculate oak (Quercus robur L.), including comparison with common beech (Fagus sylvatica L.). IAWA Bull 8:149–166Google Scholar
  21. González MS, Tomé M, Montero G (2005) Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62:633–644CrossRefGoogle Scholar
  22. Gourlay ID, Pereira H (1998) The effect of bark stripping on wood production in cork oak (Quercus suber L.) and problems of growth ring definition. In: Pereira H (ed) Cork oak and cork, Centro de Estudos Florestais, Lisboa, pp 99–107Google Scholar
  23. Helińska-Raczkowska L (1994) Variation of vessel lumen diameter in radial direction as an indication of the juvenile wood growth in oak (Quercus petraea Liebl). Ann Sci For 51:283–290Google Scholar
  24. Huber F (1993) Déterminisme de la surface des vaisseaux du bois des chênes indigènes (Quercus robur L., Quercus petraea Liebl) – effect individuel, effect de l’appareil foliaire, des conditions climatiques et de l’âge de l’arbre. Ann Sci For 50:509–524Google Scholar
  25. IAWA Committee (1989) IAWA list of microscopic features for hardwood identification, with an appendix on non-anatomical information. IAWA Bull 10:219–332Google Scholar
  26. Knapič S, Louzada JL, Leal S, Pereira H (2006) Radial variation of wood density components and ring width in cork oak trees. Ann For Sci (in press)Google Scholar
  27. Leal S, Pereira H (2006) Influence of cork removal and precipitation on ring width and vessel characteristics of Quercus suber L. Eur J For Res (submitted)Google Scholar
  28. Leal S, Sousa VB, Pereira H (2006) Variability of cell biometry in the wood of cork oak (Quercus suber L.). Wood Sci Technol 40(7):585–597CrossRefGoogle Scholar
  29. Mathieu A (1887) Flore Forestière. Berger-Levrault, ParisGoogle Scholar
  30. Natividade JV (1950) Subericultura. Direcção-Geral dos Serviços Florestais e Aquícolas, LisboaGoogle Scholar
  31. Nunes EMC (1998) Estudo da influência da precipitação e temperatura no crescimento juvenil de Quercus suber L. através da análise dos anéis anuais de crescimento. Ms D Thesis, Instituto Superior de Agronomia, LisboaGoogle Scholar
  32. Oliveira G, Correia OA, Martins-Loução MA, Catarino FM (1992) Water relations of cork-oak (Quercus suber L.) under natural conditions. Vegetatio 99–100:199–208CrossRefGoogle Scholar
  33. Over van den L, Baas P, Zandee M (1981) Comparative wood anatomy of Symplocos and latitude of provenance. IAWA Bull 2:3–24Google Scholar
  34. Parsa Pajouh D (1990) Wood anatomy of three broadleaved species native to the Caspian forest of Iran. IAWA Bull 11:134Google Scholar
  35. Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218CrossRefGoogle Scholar
  36. Pereira H, Tomé M (2004) Cork Oak. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Academic Press, pp 613–620Google Scholar
  37. Pereira H, Lopes F, Graça J (1996) The evaluation of the quality of cork planks by image analysis. Holzforschung 50:111–115CrossRefGoogle Scholar
  38. Pereira JS, Faria T, Chaves MM (1998) Impacts of climate change and elevated CO2 on the physiology and survival of cork-oak (Quercus suber L.). In: Pereira H (ed) Cork oak and cork Centro de Estudos Florestais, Lisboa, pp 182–191Google Scholar
  39. Phelps JE, Workman ECJr (1994) Vessel area studies in white oak (Quercus alba L.). Wood Fiber Sci 26:315–322Google Scholar
  40. Pláy Rave E (1880) Tratado de las Maderas de Construcción Civil y Naval. Imprenta Estereotipica y Galvanoplastia de Aribau y Ca (Sucesores de Rivadereyra), MadridGoogle Scholar
  41. Salleo S, Lo MA, Gullo F, Oliveri F (1985) Hydraulic parameters measured in 1-year-old twigs of some Mediterranean species with diffuse-porous word: changes in hydraulic conductivity and their possible functional significance. J Exp Bot 36:1–11CrossRefGoogle Scholar
  42. Saranpää P (2003) Wood density and growth. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford pp 87–117Google Scholar
  43. Savidge RA (2003) Tree growth and wood quality. In: Barnett, JR, Jeronimidis G (eds) Wood quality and its biological Basis. Blackwell, Oxford, pp 1–29Google Scholar
  44. Siau JF (1995) Wood: Influence of Moisture on Physical Properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  45. Tomé M, Coelho MB, Pereira H, Lopes F (1999) A management oriented growth and yield model for cork oak and cork oak stands in Portugal. In: Amaro A, Tomé M (eds), Empirical and process-based models for forest tree and stand growth simulation. Edições Salamandra, Lisboa, pp 189–271Google Scholar
  46. Tyree MT, Dixon MA (1986) Water stress induced cavitation and embolism in some woody plants. Physiol Plant 66:397–405CrossRefGoogle Scholar
  47. Vázquez J, Pereira H (2005) Distance dependent and distance independent models to estimate tree cork weight in Portugal. For Ecol Manag 213:117–132CrossRefGoogle Scholar
  48. Voulgaridis E (1990) Wood cell morphology characteristics of some oak species and Mediterranean schrubs. Holz Roh- Werkst 48:261–267Google Scholar
  49. Wagenführ R, Scheiber C (1985) Holzatlas. VEB Fachbuchverlag. LeipzigGoogle Scholar
  50. Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19:639–644Google Scholar
  51. Zimmermann MH, Brown CL (1977) Trees Structure and Function. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sofia Leal
    • 1
  • Vicelina B. Sousa
    • 1
  • Helena Pereira
    • 1
    Email author
  1. 1.Centro de Estudos FlorestaisInstituto Superior de AgronomiaLisboaPortugal

Personalised recommendations