Wood Science and Technology

, 41:169 | Cite as

Retention properties of wood residues and their potential for soil amelioration

  • Oliver Dünisch
  • Valmiqui Costa Lima
  • Günther Seehann
  • Johannes Donath
  • Valdinez Ribeiro Montóia
  • Thomas Schwarz
ORIGINAL

Abstract

The particle size distribution, the nutrient content and the sorption behaviour of six solid wood and ash/charcoal residues collected in three wood-processing companies in Germany and Brazil were investigated in order to elucidate the potential of these residues for the development of new products for soil amelioration. The absorption of N, P, and K by the residues and the leaching of nutrients from impregnated samples were studied in the laboratory at substrate temperatures of 20 and 300°C. The release of elements by the impregnated samples and the sorption behaviour of ash/charcoal incorporated in the soil were also studied in the field on a temperate site (Hamburg, 53°32′N 09°59′E), on a subtropical site (Ivaí, 25°15′S 50°45′W), and on a tropical site (Aripuanã, 10°09′S 59°26′W). Under laboratory conditions the solid wood residues absorbed 2.0–9.1% of the N, 0.1–0.4% of the P, and 1.0–8.5% of the K available in the impregnation solution. At a temperature of 20°C, selected sieve fractions of the ash/charcoal residues absorbed up to twice as much as N and up to 100 times more K than the treated wood residues. The absorption of N, P, and K to the ash/charcoal residues increased significantly at a substrate temperature of 300°C compared to a substrate temperature of 20°C. In absolute numbers, the leaching of N, P, and K from the impregnated ash/charcoal residues was in the range of the release by the impregnated solid wood residues, whilst the relative rate of nutrient leaching was strongly reduced. The field experiments confirmed the results obtained in the laboratory and indicated that ash/charcoal residues are suitable raw materials for the development of new products for soil amelioration, in particular for application under humid climate conditions.

Notes

Acknowledgments

We thank the German Academic Exchange Service (DAAD-program “Integrierte Umwelttechnik”), Bonn and the Otto Henneberg-Poppenbüttel Foundation, Hamburg for financial support. We are indebted to Dr. habil. O. Greis, TU Hamburg-Harburg, for making available topochemical element analyses of soil samples. We thank the Fazenda Bitumirim, Ivai and the Pytec Thermochemische Anlagen GmbH, Hamburg for providing wood and soil samples. The assistance of M.A. de Carvalho Santos, Federal University of Parana State, Curitiba and of S. Strauß, University of Hamburg is greatly appreciated. We thank two referees for the improvement of the manuscript.

References

  1. Akmar PF, Kennedy JF (2001) The potential of oil and sago palm trunk wastes as carbohydrate resources. Wood Sci Technol 35:467–473CrossRefGoogle Scholar
  2. Anonymus (2000) Leitfaden Bioenergie. Fachagentur für nachwachsende Rohstoffe, Gülzow, GermanyGoogle Scholar
  3. Bauch J (1964) Die axiale Durchlässigkeit von Kiefern-Splintholz für wässrige Lösungen. Planta 61:309–331CrossRefGoogle Scholar
  4. Bellote AFJ, Ferreira CA, da Silva HD, Andrade G (1995) Effects of the application of ash and pulp residues on the soil and the growth of Eucalyptus grandis. Bosque 16:95–100Google Scholar
  5. Dinkelmeyer H, Lehmann J, Renck A., Trujillo L, da Silva JP, Gebauer G, Kaiser K (2003) Nitrogen uptake from 15N-enriched fertilzer by four tree crops in an Amazonian agroforest. Agrofor Syst 57:213–224CrossRefGoogle Scholar
  6. Dünisch O, Bauch J, Müller M, Greis O (1998) Subcellular quantitative determination of K and Ca in phloem, cambium and xylem cells of spruce (Picea abies [L.] Karst.) at the time of earlywood and latewood formation. Holzforschung 52:582–588CrossRefGoogle Scholar
  7. Dünisch O, Azevedo CP, Gasparotto L, Montoia GR, Schwarz T (2002) Light, water, and nutrient demand for growth of three high quality timber species (Meliaceae) of the Amazon. J Appl Bot 76:29–40Google Scholar
  8. Dünisch O (2005) Influence of the El-niño southern oscillation on cambial growth of Cedrela fissilis Vell. in tropical and subtropical Brazil. J Appl Bot 79:5–11Google Scholar
  9. Echlin P (2001) Biological X-ray microanalysis: The past, present practices, and future prospects. Microsc Microanal 7:211–219PubMedGoogle Scholar
  10. EMBRAPA (1984) Levantamento de Reconhecimento dos solos do Estado do Paraná. SNLS. Boletim Técnico 57:791pGoogle Scholar
  11. FAO-UNESCO (1990) Soil map of the world, revised legend. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  12. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics by charcoal – a review. Biol Fertil Soil 35:219–230CrossRefGoogle Scholar
  13. Hasler P, Nussbaumer T (1996) Landwirtschaftliche Verwertung von Aschen aus der Verbrennung von Gras, Chinaschilf, Hanf und Stroh, Bundesamt für Energiewirtschaft, Bern, SwitzerlandGoogle Scholar
  14. Hasler P, Nussbaumer T (1997) Partikelgrößenverteilung bei der Verbrennung und Vergasung von Biomasse, Bundesamt für Energiewirtschaft, Bern, SwitzerlandGoogle Scholar
  15. Hasler P, Nussbaumer T (1998) Particle size distribution of the fly ash from biomass combustion. Biomass for Energy and Industry. In: 10th European conference and technology exhibition, 8–11 June 1998, Würzburg, Germany, pp 1330–1333Google Scholar
  16. Kang SM, Levien KL, Morell JJ (2005) Supercritical fluid impregnation of wood with biocides using temperature reduction to induce deposition. Wood Sci Technol 39:328–338CrossRefGoogle Scholar
  17. Klose S, Koch J, Bäucker E, Makeschin F (2001) Indicative properties of flyash affected forest soils in Northeastern Germany. J Plant Nutr Soil Sci 164:1–8CrossRefGoogle Scholar
  18. Kohler M, v. Wilpert K, Hildebrand EE (2000) The soil skeleton as a source for the short-term supply of base cations in forest soils of the Black Forest (Germany). Water Air Soil Pollut 122:37–48CrossRefGoogle Scholar
  19. Lisboa PLB, Prance GT, Lisboa RCL (1976) Contribuições ao projeto Aripuanã. Acta Amazon 6(4) (Suppl)Google Scholar
  20. Ludwig B, Khanna PK, Hölscher D, Anurugsa B (1999) Modelling changes in cations in the topsoil of an Amazonian acrisol in response to additions of wood ash. Eur J Soil Sci 50:717–726CrossRefGoogle Scholar
  21. Marchetti V, Clement A, Geradin P, Loubinoux B (2000) Synthesis and use of esterified sawdusts bearing carboxyl group for removal of cadmium(II) from water. Wood Sci Technol 34:167–173CrossRefGoogle Scholar
  22. Moreira EE, Ribeiro AB, Mateus EP, Mexia JT, Ottosen LM (2005) Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste: application to sawdust. Wood Sci Technol 39:291–309CrossRefGoogle Scholar
  23. Noger D, Felber H, Pletscher E, Hasler P (1996) Verwertung und Beseitigung von Holzaschen. Bundesamt für Umwelt, Wald und Landschaft, Bern, Switzerland, Schriftenreihe Umwelt Nr. 269Google Scholar
  24. Postma J, Altemüller HJ (1990) Bacteria in thin soil sections stained with the fluorescent brightener calcofluor white M2R. Soil Biol Biochem 22:89–96CrossRefGoogle Scholar
  25. Rademacher P (1986) Morphologische und physiologische Eigenschaften von Fichten (Picea abies [L.] Karst.), Tannen (Abies alba Mill.), Kiefern (Pinus sylvetsris L.) und Buchen (Fagus silvatica L.) gesunder und erkrankter Waldstandorte. GKSS 86/E/10: 274 pGoogle Scholar
  26. Rademacher P (2005a) Schwermetallgehalte in den Kompartimenten wichtiger Wirtschaftsbaumarten und deren Bedeutung für die Reststoffverwertung. Holz Roh Werkst 63:220–230CrossRefGoogle Scholar
  27. Rademacher P (2005b) Nährelementgehalte in den Kompartimenten wichtiger Wirtschaftsbaumarten und deren Bedeutung für die Reststoffverwertung. Holz Roh Werkst 63:285–296CrossRefGoogle Scholar
  28. Radlein D, Piskorz JK, Majerski P (1996) Method of producing slow release nitrogenous organic fertilizer from biomass. European patent application 0716056 A1, 12 June 1996Google Scholar
  29. Renck A, Lehmann J (2004) Rapid water flow and transport of inorganic and organic nitrogen in a highly aggregated tropical soil. Soil Sci 169:330–341CrossRefGoogle Scholar
  30. Ruckenbauer P, Obernberger I, Holzner H (1995) Erforschung der Verwendungsmöglichkeiten von Aschen aus Hackgut- und Rindenfeuerungen, Technische Universität GrazGoogle Scholar
  31. Schroth G, Seixas R, Silva RF, Texeira WG, Zech W (2000). Nutrient concentrations and acidity in ferralitic soil under perennial cropping, fallow and primary forest in Central Amazonia. Eur J Soil Sci 51:219–231CrossRefGoogle Scholar
  32. Seehann G, Donath JM (2004) Der Henneberg-Park Marienhof. Otto Henneberg-Poppenbüttel Stiftung, Hamburg p 62Google Scholar
  33. Steffen A (1995) Better utilization of tropical timber resource in order to improve sustainability and reduce negative ecological impacts. Int Trop Timb Org (ITTO), 36 pGoogle Scholar
  34. Treusch O, Hofenauer A, Tröger F, Fromm J, Wegener G (2004) Basic properties of specific wood-based materials carbonised in a nitrogen atmosphere. Wood Sci Technol 38:323–333CrossRefGoogle Scholar
  35. Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785CrossRefGoogle Scholar
  36. Tippkötter R, Ritz K, Darbyshire JF (1986) The preparation of soil thin sections for biological studies. J Soil Sci 37:681–690CrossRefGoogle Scholar
  37. Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 18:81–115CrossRefGoogle Scholar
  38. Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Oliver Dünisch
    • 1
  • Valmiqui Costa Lima
    • 2
  • Günther Seehann
    • 3
  • Johannes Donath
    • 3
  • Valdinez Ribeiro Montóia
    • 4
  • Thomas Schwarz
    • 1
  1. 1.Institute for Wood Biology and Wood ProtectionFederal Research Centre for Forestry and Forest ProductsHamburgGermany
  2. 2.Federal University of Parana StateCuritibaBrazil
  3. 3.Otto Henneberg-Poppenbüttel StiftungHamburgGermany
  4. 4.EMBRAPA Amazônia OcidentalManaus-AMBrazil

Personalised recommendations