Wood characteristics of Podocarpus oleifolius var. macrostachyus (Parl.) Buchholz and Gray native to Costa Rica: their significance for wood utilization

  • Josef Bauch
  • Gerald Koch
  • Jürgen Puls
  • Thomas Schwarz
  • Silke Voiß


Due to over-exploitation in the past, native conifer species in many tropical countries are hardly available anymore for wood utilization. In the last decades Costa Rica has undertaken considerable efforts to study the silvicultural characteristics of the native species of the family Podocarpaceae, in particular Podocarpus oleifolius var. macrostachyus (Parl.) Buchholz and Gray, in order to evaluate its suitability for cultivation in mixed plantations with preference for native species. However, sufficient information on the structural, chemical and physical characteristics of the wood of this species are not available. This investigation reports on selected wood characteristics of old-growth trees from the Cordillera de Talamanca (approximately 2,700 m a.s.l.), Costa Rica. Tracheids occupy 93% of total volume; average tracheid length is 4 mm, wall thickness ranges 2.5–4.5 (–6.5) μm throughout the annual increment. Lignin content is between 33.6 and 34.7% excluding any lignin-like compounds. Cellular UV microspectrophotometry reveals that the compound middle lamella (CML) and S2 layer are characterized by a higher absorbance than is commonly observed in e.g. Pinaceae, and with a distinct gradient from S1 to S3. The carbohydrate (cellulose and hemicelluloses) composition reflects the typical proportions as found in other conifers. A low content of organic extractives explains the only moderate (white rot) to low (brown rot) natural durability of the heartwood against wood destroying fungi. The wood density (12% mc) ranges 0.5–0.68 g cm-³; compression strength (44±2.38 MPa) and corresponding modulus of elasticity (8,600±1,720 MPa) indicate good elastomechanical properties. Accordingly, the wood is recommended for multiple indoor enduses. For exterior applications, effective protective measures and/or preservative treatment are required.


Lignin Lignin Content Accelerate Solvent Extraction Natural Durability Wood Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the cooperation of Mrs. Quiros and Mrs. Dr. P. Schmidt at CATIE, Turrialba, Costa Rica. We also thank Mr. C. Lehringer, Mrs. M. Lenz, Mrs. Dr. G. Noldt, Mrs. T. Potsch, Mrs. C. Waitkus and Mr. H. Winter for their valuable assistance and Dr. H-G. Richter for the critical review of the manuscript.


  1. Anonymous (1981) Informationsdienst Holz. Blatt 60. Arbeitsgemeinschaft Holz e.V. Düsseldorf. p 2Google Scholar
  2. Arias D, Dohrenbusch A (2001) Die forstlichen Verhältnisse in Mittelamerika - dargestellt am Beispiel Costa Rica. Forstarchiv 72:262–266Google Scholar
  3. Bauch J, Quiros L, Noldt G, Schmidt P (2006) Study on the wood anatomy, annual wood increment and intra-annual growth dynamics of Podocarpus oleifolius var. macrostachyus from Costa Rica. J Appl Bot Food Qual (in press)Google Scholar
  4. Bauch J, Seehann G, Fitzner H (1976) Microspectrophotometrical investigations on lignin of decayed wood. Mat u Org Beiheft 3:141–152Google Scholar
  5. Blaser J, Camacho M (1991) Estructura composición y aspectos silviculturales de un bosque de robles (Quercus spp.) del piso montano en Costa Rica. Informe Technico No. 185, Colección Silv. Y Man. de Bosques Nat., CATIE Turrialba, C.RGoogle Scholar
  6. Bochicchio R, Reicher F (2003) Are hemicelluloses from Podocarpus lambertii typical of gymnosperms. Carbohyd Polym 53:127–136CrossRefGoogle Scholar
  7. DIN 52 182 (1976) Bestimmung der Rohdichte. Beuth Verlag GmbH, 10772 BerlinGoogle Scholar
  8. DIN 52 185 (1976) Bestimmung der Druckfestigkeit parallel zur Faser. Beuth Verlag GmbH, 10772 BerlinGoogle Scholar
  9. DIN-EN 350-1 (1994) Natürliche Dauerhaftigkeit von Vollholz, Teil1. Beuth Verlag GmbH, 10772 BerlinGoogle Scholar
  10. Dünisch O (2001) Standort - Wachstumsbeziehungen ausgewählter Meliaceen Zentralamazoniens. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft Hamburg, Nr. 203, 185ppGoogle Scholar
  11. Erickson M, Miksche GE (1974) Charakterisierung der Lignine von Gymnospermen durch oxidativen Abbau. Holzforschung 28:135–138CrossRefGoogle Scholar
  12. Farjon A (2001) World checklist and bibliography of conifers. The Royal Botanic Gardens, Kew. p 309Google Scholar
  13. Fengel D, Wegener G (1984) Wood. Chemistry, ultrastructure, reactions. W. de Gruyter, Berlin, New York. p 613Google Scholar
  14. Fergus BJ, Procter AR, Scott AN, Goring DAI (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci Technol 3:117–138CrossRefGoogle Scholar
  15. Fukazawa K, Imagawa H (1981) Quantitative analysis of lignin using an UV microscopic image analyser. Variation within one growth increment. Wood Sci Technol 15:45–55CrossRefGoogle Scholar
  16. Grubb PJ (1976) Control of forest growth and distribution on wet mountains with special references to mineral nutrition. Ann Rev Ecol Syst 8:83–107CrossRefGoogle Scholar
  17. Günter S, Stimm B, Weber M (2004) Silvicultural contributions towards sustainable management and conservation of forest genetic resources in Southern Ecuador. Iyonia 6:75–91Google Scholar
  18. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Regenwälder in Ecuador und Costa Rica. Dissertationes Botanicae Bd. 391. J. Cramer Berlin, StuttgartGoogle Scholar
  19. Koch G (2004) Biologische und chemische Untersuchungen über Inhaltsstoffe im Holzgewebe von Buche (Fagus sylvatica L.) und Kirschbaum (Prunus serotina Borkh.) und deren Bedeutung für Holzverfärbungen. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft Nr. 216, 84ppGoogle Scholar
  20. Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 119–130Google Scholar
  21. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567CrossRefGoogle Scholar
  22. Lamprecht H (1986) Waldbau in den Tropen, Paul Parey, Hamburg Berlin, p 318Google Scholar
  23. Lange W, Faix O (1999) Lignin-polyphenol interaction in Azobe (Lophira alata) heartwood. A study on milled wood lignin (MWL) and Klason residues. Holzforschung 53:519–524CrossRefGoogle Scholar
  24. Malavassi IMC (1995) Maderas de Costa Rica – 130 especies forestales. Editorial de la Universidad de Costa RicaGoogle Scholar
  25. Mills AR, Timell TE (1963) Constitution of three hemicelluloses from the wood of Engelmann spruce (Picea engelmanni). Can J Chem 41:1389–1395CrossRefGoogle Scholar
  26. Page CN (1989) Podocarpaceae. In: The families and genera of vascular plants vol. 1 Pteridophytes and Gymnosperms (Eds. Kramer KU, Green PS), Springer Verlag Berlin. pp 332–346Google Scholar
  27. Patel RN (1967) Wood anatomy of Podocarpaceae indigenous to New Zealand. N Z J Bot 5:307–321Google Scholar
  28. Puls J (1993) Substrate analysis of forest and agricultural wastes. In: Bioconversion of forest and agricultural plant residues (Ed. Saddler JN) CAB International Wallingford, pp 13–32Google Scholar
  29. Rademacher P (1986) Morphologische und physiologische Eigenschaften von Fichten (Picea abies (L.) Karst.), Tannen (Abies alba Mill), Kiefern (Pinus sylvestris L.) und Buchen (Fagus sylvatica L.) gesunder und erkrankter Waldstandorte. GKSS 86/E/10 GKSS Forschungszentrum, GeesthachtGoogle Scholar
  30. Räber C (1991) Regeneración natural sobre árboles muertos en un bosque nublado de Costa Rica. Coleccion silvicultura y manejo de bosques naturales No. 4, CATIE Turrialba, Costa RicaGoogle Scholar
  31. Richter HG, Grosser D, Heinz I, Gasson PE (2004) IAWA list of microscopic features for softwood identification. IAWA J 25:1–70Google Scholar
  32. Schmidt P (1986) Biomasseproduktion und Mineralelementversorgung ausgewählter tropischer Nutzpflanzen im Amazonasgebiet Brasiliens. Dissertation FB Biologie, Universität Hamburg, p 314Google Scholar
  33. Scott JAN, Procter AR, Fergus BJ, Goring DAI (1969) The application of ultraviolet microscopy to the distribution of lignin in wood. Wood Sci Technol 3:73–92CrossRefGoogle Scholar
  34. Shio T, Higuchi T (1978) Studies on the lignins of Podocarpus, Gnetum, Drimys and Pseudowintera. Wood Research No. 63, 1–10Google Scholar
  35. Timell TE (1986) Compression wood in gymnosperms, vol 1, Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  36. Voiß S (2003) Struktur des Holzes von Podocarpaceen mit besonderer Berücksichtigung der Arten Costa Ricas. Diplomarbeit FB Biologie, Universität HamburgGoogle Scholar
  37. Wagenführ R, Scheiber C (1974) Holzatlas. VEB Fachbuchverlag LeipzigGoogle Scholar
  38. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–258CrossRefGoogle Scholar
  39. Yoshizawa N, Itoh T, Shimaji K (1982) Variation in features of compression wood among gymnosperms. Bull. of the Utsunomiya University Forests, Utsunomiya Japan No. 18:45–64Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Josef Bauch
    • 1
  • Gerald Koch
    • 2
  • Jürgen Puls
    • 2
  • Thomas Schwarz
    • 2
  • Silke Voiß
    • 1
  1. 1.Department of Wood ScienceHamburg UniversityHamburgGermany
  2. 2.Federal Research Center of Forestry and Forest ProductsHamburgGermany

Personalised recommendations