Advertisement

Wood Science and Technology

, Volume 39, Issue 8, pp 601–617 | Cite as

Polysaccharides in some industrially important hardwood species

  • S. WillförEmail author
  • A. Sundberg
  • A. Pranovich
  • B. Holmbom
ORIGINAL

Abstract

The amount and composition of sugar units comprising polysaccharides in sapwood and heartwood, or stemwood, of 11 industrially important pulpwood species were analysed. The polysaccharide content was between 60 and 80% (w/w) for all species, with cellulose as the predominant polysaccharide type and glucuronoxylans as the main non-cellulosic polysaccharides. The second most abundant non-cellulosic polysaccharides were either pectins, i.e. polygalacturonic acids, or glucomannans. The amount of acidic sugar units were 15–23% of the total amount of non-cellulosic sugar units in all samples, with the Acacia species in the high end. The amount and composition of water-soluble carbohydrates from ground wood samples were also analysed, since these are important in mechanical and chemimechanical pulping, and as a possible source of bioactive polymers. Sapwood released more carbohydrates than heartwood for most species. It is to be noted that the relative amount of dissolved acidic sugar units was larger from the heartwood than from the sapwood for all species. Probably due to the mild treatment conditions, the main dissolved polysaccharides were xylans only for a few samples, while easily soluble galactans, arabinogalactans, or mannans dominated in most species. Pectins dominated in heartwood of Populus grandidentata. Generally, pectins and acidic xylans were the main acidic polysaccharides.

Keywords

Xylose Hemicellulose Pectin Galacturonic Acid Tension Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Yang Liu is acknowledged for her help with the analyses. Suvi Pietarinen, Linda Nisula, Jarl Hemming, and Simon Fagerudd (UPM-Kymmene) are acknowledged for providing the wood samples. This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme (2000–2005) by the Academy of Finland.

References

  1. Aspinall GO, Hirst EL, Mahomed RS (1954) Hemicellulose A of beechwood (Fagus sylvatica). J Chem Soc Abstr, pp 1734–1738Google Scholar
  2. Bertaud F, Sundberg A, Holmbom B (2002) Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr Polym 48:319–324CrossRefGoogle Scholar
  3. Burnfield KE (1995) Application of new gums for enhancing strength and productivity. Papermakers Conference, Proc., TAPPI, Chicago, pp 209–214Google Scholar
  4. Clarke CRE, Garbutt DCF, Pearce J (1997) Growth and wood properties of provenances and trees of nine eucalypt species. Appita J 50:121–130Google Scholar
  5. Dahlman O, Jacobs A, Liljenberg A, Olsson AI (2000) Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis. J Chromatogr A 891:157–174CrossRefPubMedGoogle Scholar
  6. Ebringerová A (1986) Charakterisierung und Distribution der Hemicellulosen im Ast-, Stamm- und Wurzelholz der Buche (Fagus sylvatica L). Drevársky Výskum 109:21–29Google Scholar
  7. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation, procedures and properties. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  8. Evtuguin DV, Tomás JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338:597–604CrossRefPubMedGoogle Scholar
  9. Fengel D, Wegener G, Heizmann A, Przyklenk M (1978) Analyze von Holz and Zellstoff durch totalhydrolyse mit trifluoressigsäure. Cell Chem Technol 12:31–37 Google Scholar
  10. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr Polym 43:367–374CrossRefGoogle Scholar
  11. Gustavsson M, Bengtsson M, Gatenholm P, Glasser W, Teleman A, Dahlman O (2001) Isolation, characterisation and material properties of 4-O-methylglucuronoxylan from aspen. In: Chiellini E (eds) Biorelated polymers: sustainable polymer science and technology. Kluwer/Plenum Publishers, New York, pp 41–52Google Scholar
  12. Hafrén J, Westermark U (2001) Distribution of acidic and esterified polygalacturonans in sapwood of spruce, birch and aspen. Nord Pulp Pap Res J 16:284–290CrossRefGoogle Scholar
  13. Han M, Swan B (1968) Methylation studies of xylans from eucalypt and birch wood. Svensk Papperstidn 71:552–557Google Scholar
  14. Hannuksela T (2004) Mannans in mechanical pulping and papermaking—naturally existing aids and promising wet-end additives. Doctoral thesis, Åbo Akademi University, Faculty of Chemical Engineering, Laboratory of Wood and Paper Chemistry, Turku/Åbo, FinlandGoogle Scholar
  15. Hannuksela T, Holmbom B (2004) Stabilization of wood-resin emulsions by dissolved galactoglucomannans and galactomannans. J Pulp Pap Sci 30:159–164Google Scholar
  16. Hannuksela T, Holmbom B, Mortha G, Lachenal D (2004) Effect of sorbed galactoglucomannans and galactomannans on pulp and paper handsheet properties, especially strength properties. Nord Pulp Pap Res J 19:237–243CrossRefGoogle Scholar
  17. Holmbom B, Sundberg A (2003) Dissolved and colloidal substances accumulating in papermaking process waters. Wochenbl Papierfabr 21:1305–1311Google Scholar
  18. Jacobs A, Dahlman O (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biomacromol 2:894–905CrossRefGoogle Scholar
  19. Jones JKN, Wise LE (1952a) The hemicelluloses present in aspen wood (Populus tremuloides). Part I. J Chem Soc Abstr, pp 2750–2756Google Scholar
  20. Jones JKN, Wise LE (1952b) The hemicelluloses present in aspen wood (Populus tremuloides). Part II. J Chem Soc Abstr, pp 3389–3393Google Scholar
  21. Jones JKN, Merler E, Wise LE (1957) The hemicelluloses present in aspen wood (Populus tremuloides). Part III. The constitution of pentosan and hexosan fractions. Can J Chem 35:634–645CrossRefGoogle Scholar
  22. Jones JKN, Purves CB, Timell TE (1961) Constitution of a 4-O-methylglucuronoxylan from the wood of trembling aspen (Populus tremuloides Michx). Can J Chem 39:1059–1066CrossRefGoogle Scholar
  23. Kohn R, Hromádková Z, Ebringerová A, Toman R (1986) Distribution pattern of uronic acid units in 4-O-methyl-D-glucurono-D-xylan of beech (Fagus sylvatica L). Collection Czechoslovak Chem Commun 51:2243–2249CrossRefGoogle Scholar
  24. Konn J, Holmbom B, Nickull O (2002) Chemical reactions in chemimechanical pulping: material balances of wood components in a CTMP process. J Pulp Pap Sci 28:395–399Google Scholar
  25. Košíková B, Ebringerová A (1986) Reactivity of lignin and polysaccharides in the individual parts of beech tree (Fagus sylvatica). Drevársky Výskum 108:43–50Google Scholar
  26. Laine C, Tamminen T (2002) Origin of carbohydrates dissolved during oxygen delignification of birch and pine kraft pulp. Nord Pulp Pap Res J 17:168–171CrossRefGoogle Scholar
  27. Lattová E, Ebringerová A, Toman R, Kačuráková M (1992) Controlled depolymerisation of 4- O-methyl-D-glucurono-D-xylan isolated from wood of beech (Fagus sylvatica L). Chem Papers 46:66–69Google Scholar
  28. Mansilla H, García R, Tapia J, Durán H, Urzúa S (1991) Chemical characterisation of Chilean hardwoods. Wood Sci Technol 25:145–149CrossRefGoogle Scholar
  29. Meier H (1962) Studies on a galactans from tension wood of beech (Fagus sylvatica L). Acta Chem Scand 16:2275–2283CrossRefGoogle Scholar
  30. Olson JR, Jourdain CJ, Rousseau RJ (1985) Selection for cellulose content, specific gravity, and volume in young Populus deltoides clones. Can J For Res 15:393–396CrossRefGoogle Scholar
  31. Örså F, Holmbom B, Thornton J (1997) Dissolution and dispersion of spruce wood components into hot water. Wood Sci Technol 31:279–290CrossRefGoogle Scholar
  32. Otero D, Sundberg K, Holmbom B, Blanco A, Negro C, Tijero J (2000) Effects of wood polysaccharides on the depositability of wood resin. Nord Pulp Pap Res J 15:607–613CrossRefGoogle Scholar
  33. Pereira H, Sardinha R (1984) Chemical composition of Eucalyptus globulus Lab. Appita 37:661–664Google Scholar
  34. Pranovich AV, Sundberg KE, Holmbom BR (2003) Chemical changes in thermomechanical pulp at alkaline conditions. J Wood Chem Technol 23:87–110CrossRefGoogle Scholar
  35. Pranovich A, Konn J, Holmbom B (2005) Variation in spatial distribution of organic and inorganic compounds across annual growth rings of Norway spruce and aspen. In: Proceedings of 13th International Symposuum Wood Fibre Pulping Chem, Auckland, Appita, vol 2, pp 453–460Google Scholar
  36. Raymond D, Closset G (2004) Forest products biorefinery: technology for a new future. Tappi Solut 89:49–53Google Scholar
  37. Rolin C (1993) Pectin. In: Whistler RL, BeMiller JN (eds) Industrial gums polysaccharides and their derivatives. Academic, London, pp 257–293Google Scholar
  38. Shatalov AA, Evtuguin DV, Neto CP (1999) (2-O-α-D-galactopyranosyl-4-O-methyl-α-D-glucurono)-D-xylan from Eucalyptus globulus Labill. Carbohydr Res 320:93–99CrossRefPubMedGoogle Scholar
  39. Shimizu K, Samuelson O (1973) Uronic acids in birch hemicellulose. Svensk Papperstidn 76:150–155Google Scholar
  40. Sjöström E (1993) Wood chemistry—fundamentals and applications. Academic, LondonGoogle Scholar
  41. Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219CrossRefGoogle Scholar
  42. Sundberg KE, Sundberg AC, Thornton JW, Holmbom BR (1998) Pectic acids in the production of wood-containing paper. Tappi J 81:131–136Google Scholar
  43. Sundberg A, Holmbom B, Willför S, Pranovich A (2000) Weakening of paper strength by wood resin. Nord Pulp Pap Res J 15:46–53CrossRefGoogle Scholar
  44. Sundberg A, Pranovich AV, Holmbom B (2003) Chemical characterization of various types of mechanical pulp fines. J Pulp Pap Sci 29:173–178Google Scholar
  45. Teleman A, Harjunpää V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Characterization of 4-deoxy-β-L-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR sprctroscopy. Carbohydr Res 272:55–71CrossRefPubMedGoogle Scholar
  46. Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815CrossRefPubMedGoogle Scholar
  47. Teleman A, Nordström M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534CrossRefPubMedGoogle Scholar
  48. Timell TE (1960) Isolation of hardwood glucomannans. Svensk Papperstidn 63:472–476Google Scholar
  49. Timell TE (1964) Wood hemicelluloses I. Adv Carbohyd Chem 19:247–302Google Scholar
  50. Timell TE (1965) Wood hemicelluloses II. Adv Carbohyd Chem 20:409–483Google Scholar
  51. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRefGoogle Scholar
  52. Vuorinen T, Alén R (1999) Carbohydrates. In: Analytical methods in wood chemistry, pulping, and papermaking Springer, Berlin Heidelberg New York, pp 37–75Google Scholar
  53. Wallis AFA, Wearne RH, Wright PJ (1996a) Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Appita J 49:427–432Google Scholar
  54. Wallis AFA, Wearne RH, Wright PJ (1996b) Analytical characteristics of plantation eucalypt woods relating to kraft pulp yields. Appita J 49:427–432Google Scholar
  55. Willför S, Holmbom B (2004) Isolation and characterisation of water-soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol 38:173–179CrossRefGoogle Scholar
  56. Willför S, Sjöholm R, Laine C, Holmbom B (2002) Structural features of water-soluble arabinogalactans from Norway spruce and Scots pine heartwood. Wood Sci Technol 36:101–110CrossRefGoogle Scholar
  57. Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003a) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187CrossRefGoogle Scholar
  58. Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003b) Recovery of water-soluble acetyl-galactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32Google Scholar
  59. Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B (2003c) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57:27–36CrossRefGoogle Scholar
  60. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257CrossRefGoogle Scholar
  61. Zobel BZ, van Buijtenen JP (1989) Wood variation, its causes and control. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Willför
    • 1
    Email author
  • A. Sundberg
    • 1
  • A. Pranovich
    • 1
  • B. Holmbom
    • 1
  1. 1.Process Chemistry Centre, Laboratory of Wood and Paper ChemistryÅbo Akademi UniversityÅboFinland

Personalised recommendations