Advertisement

Wood Science and Technology

, Volume 37, Issue 6, pp 489–494 | Cite as

Hornification—its origin and interpretation in wood pulps

  • J. M. B. Fernandes DinizEmail author
  • M. H. Gil
  • J. A. A. M. Castro
Original

Abstract

Although perfectly diagnosed in terms of the occurrence of physical changes, the hornification phenomenon, in its origin, has frequently been associated with the formation of irreversible or partially reversible hydrogen bonding in wood pulps or paper upon drying or water removal. Its characterisation has therefore been confusing and unsatisfactory. The authors propose that a sufficiently varied source of experimental data already exists to show that hornification is only a particular case of lactone bridge formation in lignocellulosic materials.

Keywords

Lactone Wood Pulp Lactone Formation Water Retention Value Mechanical Pulp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Back EL (1967) Thermal auto-crosslinking in cellulose material. Pulp Pap Mag Can 68:T165–T171Google Scholar
  2. Bawden AD, Kibblewhite RP (1995) Effects of multiple drying treatments on kraft fibre walls. In: Third research forum on recycling. CPPA, Vancouver, pp 171–177Google Scholar
  3. Brecht W, Globig C (1954) Untersuchung eines gebleichten Strohzellstoffes auf seine papiertechnologischen Eigenschaften. Wochenbl Papierfabr 82:807–813Google Scholar
  4. Ehrnrooth EML (1984) The swelling of dried and never-dried acid chlorite delignified fibers. Svensk Papperstidn 87:R74–R77Google Scholar
  5. Fernandes Diniz JMB (1996) Application of chemical equilibrium to wood pulps. Holzforschung 50:429–433Google Scholar
  6. Fernandes Diniz JMB, Pethybridge AD (1995) Interfering lactone formation in alkalimetric studies of paper woodpulps. Holzforschung 49:81–83Google Scholar
  7. Frey-Wyssling A (1951) Über verbänderte Cellulosemikrofibrillen in Zellwänden. Holz als Roh- und Werkstoff 9:333–334Google Scholar
  8. Gruber E, Weigert J (1998) Chemische Modifizierung von Zellstoffen zur Verminderung ihrer Verhornungsneigung. Papier 52:V20–V26Google Scholar
  9. Higgins HG, McKenzie AW (1963) The structure and properties of paper. XIV. Effects of drying on cellulose fibres and the problem of maintaining pulp strength. Appita J 16:145–161Google Scholar
  10. Howard RC (1990) The effects of recycling on paper quality. J Pulp Pap Sci 16:J143–J149Google Scholar
  11. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, San Diego, pp 123–125Google Scholar
  12. Jayme G (1943) Über die Reaktionsfähigkeit von Zellstoffen. Cellulosechemie 21:73–86Google Scholar
  13. Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Wochenbl Papierfabr 6:187–194Google Scholar
  14. Jayme G, Hunger G (1956) Verhornungserscheinungen an Cellulosefaserstrukturen in elektroneoptischer Sicht. Monatshefte für Chemie 87:8–23Google Scholar
  15. Jayme G, Hunger G (1957) The rearrangement of microfibrils in dried cellulose and the implication of this structure alteration on pulp properties. In: Bolam F (ed) Fundamentals of papermaking fibres. BPBMA, Cambridge, pp 263–270Google Scholar
  16. Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40CrossRefGoogle Scholar
  17. Kaverzneva ED, Ivanov VI, Salova AS (1952) Chemical transformations of the macromolecule of cellulose under the action of oxidizing agents. VI. The presence in oxycelluloses of the groupings of carbonic esters and their effect on the determination of uronic carboxylic groups. Izvest Akad Nauk SSSR, Otdel Khim Nauk, pp 185–189Google Scholar
  18. Kitayama T, Okayama T, Oye R (1983) Changes of chemical pulp fibres during recycling. In: International symposium on wood and pulping chemistry, vol 3. Japanese TAPPI, Tsukuba, pp 118–123Google Scholar
  19. Klungness JH, Caufield DF (1982) Mechanisms affecting fiber bonding during drying and aging of pulps. TAPPI J 65:94–97Google Scholar
  20. Krässig H (1984) Struktur und Reaktivität von Cellulosefasern. Papier 38:571–582Google Scholar
  21. Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking. Trans 10th fundamental research symposium. Pira International, Oxford, pp 1235–1260Google Scholar
  22. Lindström T (1986) The porous lamellar structure of the cell wall. In: Bristow JA, Kolseth P (eds) Paper, structure and properties. Marcel Dekker, New York, pp 99–109Google Scholar
  23. Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Svensk Papperstidn 85:R146–R151Google Scholar
  24. Maloney TC, Li TQ, Weise U, Paulapuro H (1997) Intra- and inter-fibre pore closure in wet pressing. Appita J 50:301–306Google Scholar
  25. Minor JL (1994) Hornification—its origin and meaning. Progr Pap Recycling 3:93–95Google Scholar
  26. Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360Google Scholar
  27. Rácz I, Borsa J (1997) Swelling of carboxymethylated cellulose fibres. Cellulose 4:293–303CrossRefGoogle Scholar
  28. Robertson AA (1964) Some observations on the effects of drying papermaking fibres. Pulp Pap Mag Can 65:T161–T168Google Scholar
  29. Ruffini G (1966) Improvement in bonding of wood pulps by the presence of acidic groups. Svensk Papperstidn 69:72–76Google Scholar
  30. Samuelson O, Törnell B (1961) Influence of lactones upon the determination of carboxyl groups in cellulose. Svensk Papperstidn 64:198–203Google Scholar
  31. Samuelson O, Wennerblom A (1955) Determination of carboxyl groups in cellulose. Svensk Papperstidn 58:713–716Google Scholar
  32. Scallan AM, Katz S, Argyropoulos DS (1989) Conductometric titration of cellulose fibres. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, pp 1457–1471Google Scholar
  33. Slavik I, Kucerova M (1967) Formation of lactone bonds in cellulose during acidification and drying. Faserforsch Textiltech 18:396–397Google Scholar
  34. Slavik I, Pasteka M, Kucerova M (1967) The behavior of lactone groups in cellulosic materials during the determination of carboxyl groups by different methods. Faserforsch Textiltech 18:4–8Google Scholar
  35. Slavik I, Kucerova M (1969) Time profile of lactone and ester formation in cellulose upon acidification and drying. Faserforsch Textiltech 20:346–347Google Scholar
  36. Smook GA (1990) Hornification (keyword). In: Handbook of pulp & paper terminology. Angus Wilde, Vancouver, p 135Google Scholar
  37. Stakheeva-Kaverzneva ED, Salova AS (1951) Chemical changes of cellulose macromolecule under action of oxidizing agents. IV. Lactone links in the macromolecule of oxycellulose and their effect on determination of carbonyl groups by condensation with hydroxylamine. Izvest Akad Nauk SSSR, Otdel Khim Nauk 782–790Google Scholar
  38. Stakheeva-Kaverzneva ED, Salova AS (1953). Specific method of determination of carbonyl groups in oxycellulose. Zhur Anal Khim 8:365–369Google Scholar
  39. Stone JE, Scallan AM (1966) Influence of drying on the pore structures of the cell wall. In: Bolam F (ed) Consolidation of the paper web. BPBMA, London, pp 145–174Google Scholar
  40. Stone JE, Scallan AM (1968) A structural model for the cell wall of waterswollen wood pulp fibres based on their accessability to macromolecules. Cell Chem Technol 2:343–358Google Scholar
  41. Stone JE, Scallan AM, Abrahamson B (1968) Influence of beating on cell wall swelling and internal fibrillation. Svensk Papperstidn 71:687–694Google Scholar
  42. Streitwieser A, Heathcock CH (1989) Introduction to organic chemistry, 3rd edn. Macmillan, New York, p 859Google Scholar
  43. Weise U (1998) Hornification—mechanisms and terminology. Paperi Puu 80:110–115Google Scholar
  44. Weise U, Hiltunen LE, Paulapuro H (1998) Verhornung von Zellstoff und Maßnahmen zu ihrer Reversion. Papier 52:V14–V19Google Scholar
  45. Weise U, Paulapuro H (1996) The effect of drying and re-wetting cycles on fibre swelling. In: Proc fourth European workshop on lignocellulosics and pulp, advances in characterization and processing of wood, non-woody and secondary fibres, Stresa, Italy, 8–11 September 1996, pp 389–394Google Scholar
  46. Wilson K (1966) Determination of carboxyl groups in cellulose. Svensk Papperstidn 69:386–390Google Scholar
  47. Yasnovsky VM, MacDonald DM (1983) Prevention of hornification of dissolving pulp. US Patent 4,385,172, assigned to International Paper CoGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. M. B. Fernandes Diniz
    • 1
    Email author
  • M. H. Gil
    • 1
  • J. A. A. M. Castro
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations