Theory of Computing Systems

, Volume 64, Issue 2, pp 272–310 | Cite as

Cache Me if You Can: Capacitated Selfish Replication Games in Networks

  • Ragavendran Gopalakrishnan
  • Dimitrios KanoulasEmail author
  • Naga Naresh Karuturi
  • C. Pandu Rangan
  • Rajmohan Rajaraman
  • Ravi Sundaram


In Peer-to-Peer (P2P) network systems, content (object) delivery between nodes is often required. One way to study such a distributed system is by defining games, which involve selfish nodes that make strategic choices on replicating content in their local limited memory (cache) or accessing content from other nodes for a cost. These Selfish Replication games have been introduced in Chun et al. (2004) for nodes that do not have any capacity limits, leaving the capacitated problem, i.e. Capacitated Selfish Replication (CSR) games, open. In this work, we first form the model of the CSR games, for which we perform a Nash equilibria analysis. In particular, we focus on hierarchical networks, given their extensive use to model communication costs of content delivery in P2P systems. We present an exact polynomial-time algorithm for any hierarchical network, under two constraints on the utility functions: 1) “Nearer is better”, i.e. the closest the content is to the node the less its access cost is, and 2) “Independence of irrelevant alternatives”, i.e. aggregation of individual node preferences. This generalization represents a vast class of utilities and more interestingly allows each of the nodes to have simultaneously completely different functional forms of utility functions. In this general framework, we present CSR games results on arbitrary networks and outline the boundary between intractability and effective computability in terms of the network structure, object preferences, and the total number of objects. Moreover, we prove that the problem of equilibria existence becomes NP-hard for general CSR games. By adding some constraints in the number of objects and their preferences, we show that the equilibrium can be found in polynomial time. Finally, we introduce the fractional version of CSR games (F-CSR) to represent content distribution. We prove that equilibrium exists for every F-CSR game, but it is PPAD-complete.


Game theory Caching Distributed networks Hierarchical networks Preference orders and choice theory Computational complexity 



  1. 1.
    Ahmadyan, S.N., Etesami, S.R., Poor, H.V.: A random tree search algorithm for Nash equilibrium in capacitated selfish replication games. In: IEEE 55th conference on decision and control (CDC), pp 4439–4444. (2016)
  2. 2.
    Angel, E., Bampis, E., Pollatos, G.G., Zissimopoulos, V.: Optimal data placement on networks with constant number of clients. Theoretical Computer Science (2013)Google Scholar
  3. 3.
    Arrow, K.: Social choice and individual values. Yale University Press (1951)Google Scholar
  4. 4.
    Baev, I.D., Rajaraman, R., Swamy, C.: Approximation Algorithms for Data Placement Problems. SIAM J. Comput. 38(4), 1411–1429 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: SIGCOMM ’98, pp 56–67 (1998)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. Journal of the ACM (JACM), 56(3) (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, Y., Katz, R.H., Kubiatowicz, J.D.: Scan: A dynamic, scalable, and efficient content distribution network. In: Mattern, F., Naghshineh, M. (eds.) Pervasive computing, pp 282–296. Springer, Berlin (2002)Google Scholar
  8. 8.
    Chun, B.G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubiatowicz, J.: Selfish caching in distributed systems: A game-theoretic analysis. In: ACM symposium on principles of distributed computing (PODC), pp 21–30 (2004)Google Scholar
  9. 9.
    Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage with cfs. In: Proceedings of the 8th ACM symposium on operating systems principles, SOSP ’01., pp 202–215. ACM, New York (2001)
  10. 10.
    Danzig, P.: Netcache architecture and deployment. Comput. Netw. ISDN Syst. 30(22-23), 2081–2091 (1998). CrossRefGoogle Scholar
  11. 11.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. STOC ACM, 71–78 (2006)Google Scholar
  12. 12.
    Devanur, N.R., Garg, N., Khandekar, R., Pandit, V., Saberi, A., Vazirani, V.V.: Price of anarchy, locality gap, and a network service provider game. In: WINE, pp 1046–1055 (2005)Google Scholar
  13. 13.
    Douceur, J.R., Wattenhofer, R.P.: Large-scale simulation of replica placement algorithms for a serverless distributed file system. In: MASCOTS 2001 proceedings 9th international symposium on modeling, analysis and simulation of computer and telecommunication systems, pp. 311–319. (2001)
  14. 14.
    Etesami, S.R., Basar, T.: Pure Nash equilibrium in capacitated selfish replication (CSR) game. arXiv:1404.3442 (2014)
  15. 15.
    Etesami, S.R., Basar, T.: Approximation algorithm for the binary-preference capacitated selfish replication game and a tight bound on its price of anarchy. arXiv:1506.04047v2 (2016)
  16. 16.
    Etesami, S.R., Basar, T.: Pure Nash equilibrium in a capacitated resource allocation game with binary preferences. arXiv:1404.3442v3(2016)
  17. 17.
    Etesami, S.R., Basar, T.: Pure Nash equilibrium in a capacitated selfish resource allocation game. IEEE Transactions on Control of Network Systems PP(99), 1–1 (2016)zbMATHGoogle Scholar
  18. 18.
    Etesami, S.R., Başar, T.: Network games, pp 1–46. Springer International Publishing, Cham (2017). Google Scholar
  19. 19.
    Etesami, S.R., Başar, T.: An approximation algorithm and price of anarchy for the binary-preference capacitated selfish replication game. In: 54th IEEE conference on decision and control (CDC), pp. 3568–3573. (2015)
  20. 20.
    Etesami, S.R., Başar, T.: Price of anarchy and an approximation algorithm for the binary-preference capacitated selfish replication game. Automatica 76(Supplement C), 153–163 (2017). MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a Network Creation Game. In: PODC ’03: Proceedings of the 22nd annual symposium on principles of distributed computing., pp 347–351. ACM Press, New York (2003)
  22. 22.
    Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: A scalable wide-area web cache sharing protocol. In: Proceedings of the ACM SIGCOMM ’98 conference on applications, technologies, architectures, and protocols for computer communication, SIGCOMM ’98., pp 254–265. ACM, New York (1998)
  23. 23.
    Feldman, M., Chuang, J.: Overcoming free-riding behavior in peer-to-peer systems. ACM Sigecom Exchanges 5(4), 41–50 (2005)CrossRefGoogle Scholar
  24. 24.
    Fudenberg, D., Levine, D.: The theory of learning in games. MIT Press (1998)Google Scholar
  25. 25.
    Garces-Erice, L., Biersack, E.W., Felber, P.A., Ross, K.W., Urvoy-Keller, G.: Hierarchical peer-to-peer systems. Parallel Process. Lett. 13 (04), 643–657 (2003). MathSciNetCrossRefGoogle Scholar
  26. 26.
    Garey, M., Johnson, D.: Computers and intractability. Freeman Press (1979)Google Scholar
  27. 27.
    Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in ad hoc networks. IEEE J. Sel. Areas Commun. 24 (5), 1020–1033 (2006). CrossRefGoogle Scholar
  28. 28.
    Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in Ad Hoc networks. IEEE J. Sel. Areas Commun. 24(5), 1020–1033 (2006)CrossRefGoogle Scholar
  29. 29.
    Gopalakrishnan, R., Kanoulas, D., Karuturi, N., Pandu Rangan, C., Rajaraman, R., Sundaram, R.: Cache me if you can: Capacitated selfish replication games. In: Latin American symposium on theoretical informatics (LATIN), vol. 7256, pp. 420-432 (2012)CrossRefGoogle Scholar
  30. 30.
    Gribble, S.D., Halevy, A.Y., Ives, Z.G., Rodrig, M., Suciu, D.: What can database do for peer-to-peer?. In: WebDB workshop on databases and the web (2001)Google Scholar
  31. 31.
    Hu, X., Gong, J.: PhD forum: Not so cooperative caching. In: 21st IEEE international conference on network protocols (ICNP), pp. 1–3. (2013)
  32. 32.
    Hu, X.Y., Gong, J.: Study on the theoretical framework of not so cooperative caching. J. Internet Technol. 15(3), 351–362 (2014). Google Scholar
  33. 33.
    Iyer, S., Rowstron, A.I.T., Druschel, P.: Squirrel: a decentralized peer-to-peer web cache. In: PODC (2002)Google Scholar
  34. 34.
    Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility location and k-median problems. In: 40th annual symposium on foundations of computer science (Cat. No.99CB37039), pp. 2–13.
  35. 35.
    Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the placement of internet instrumentation. In: Proceedings IEEE INFOCOM 2000. Conference on computer communications. 19th annual joint conference of the ieee computer and communications societies (Cat. No.00CH37064), vol. 1, pp. 295-304. (2000)
  36. 36.
    Jamin, S., Jin, C., Kurc, A.R., Raz, D., Shavitt, Y.: Constrained mirror placement on the internet. In: Proceedings IEEE INFOCOM 2001. Conference on computer communications. 20th annual joint conference of the ieee computer and communications society (Cat. No.01CH37213), vol. 1, pp. 31–40. (2001)
  37. 37.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How Easy is Local Search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: Proceedings of the 29th annual ACM symposium on theory of computing (STOC), pp. 654–663 (1997)Google Scholar
  39. 39.
    Kintali, S., Poplawski, L.J., Rajaraman, R., Sundaram, R., Teng, S.H.: Reducibility among fractional stability problems. Proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS) (2009)Google Scholar
  40. 40.
    Ko, B.J., Rubenstein, D.: Distributed self-stabilizing placement of replicated resources in emerging networks. IEEE/ACM Trans. Netw. 13(3), 476–487 (2005). CrossRefGoogle Scholar
  41. 41.
    Korupolu, M., Plaxton, C.G., Rajaraman, R.: Placement algorithms for hierarchical cooperative caching. J. Algorithms 38, 260–302 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Korupolu, M.R., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Trans. Knowl. Data Eng. 14(6), 1317–1329 (2002)CrossRefGoogle Scholar
  43. 43.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: STACS, pp. 404–413 (1999)CrossRefGoogle Scholar
  44. 44.
    Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture for global-scale persistent storage. ACM SIGPLAN Not. 35(11), 190–201 (2000). CrossRefGoogle Scholar
  45. 45.
    Laoutaris, N., Smaragdakis, G., Bestavros, A., Stavrakakis, I.: Mistreatment in distributed caching groups: Causes and implications. In: INFOCOM (2006)Google Scholar
  46. 46.
    Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish replication. IEEE Trans. Parallel Distrib. Syst. 17(12), 1401–1413 (2006)CrossRefGoogle Scholar
  47. 47.
    Laoutaris, N., Smaragdakis, G., Oikonomou, K., Stavrakakis, I., Bestavros, A.: Distributed placement of service facilities in large-scale networks. In: INFOCOM, pp. 2144–2152 (2007)Google Scholar
  48. 48.
    Leff, A., Wolf, J.L., Yu, P.S.: Replication algorithms in a remote caching architecture. IEEE Trans. Parallel Distrib. Syst. 4(11), 1185–1204 (1993)zbMATHCrossRefGoogle Scholar
  49. 49.
    Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the optimal placement of web proxies in the internet. In: IEEE INFOCOM ’99. Conference on computer communications. Proceedings. 18th annual joint conference of the IEEE computer and communications societies. The future is now (Cat. No.99CH36320), vol. 3, pp. 1282–1290. (1999)
  50. 50.
    Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K, Leonardi, S, Vazirani, V (eds.) Approximation algorithms for combinatorial optimization, pp 229–242. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  51. 51.
    McCuaig, W., Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. In: STOC, pp. 402–405 (1997)Google Scholar
  52. 52.
    Mettu, R.R., Plaxton, C.G.: The online median problem. In: Proceedings of the 41st annual symposium on foundations of computer science. FOCS ’00, p 339. IEEE Computer Society, Washington (2000)Google Scholar
  53. 53.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani VV: Algorithmic game theory. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  54. 54.
    Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994)Google Scholar
  55. 55.
    Pacifici, V.: Resource allocation in operator-owned content delivery systems. KTH School of Electrical Engineering, PhD thesis (2016)Google Scholar
  56. 56.
    Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. JCSS 48(3), 498–532 (1994)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Pollatos, G.G., Telelis, O., Zissimopoulos, V.: On the social cost of distributed selfish content replication. In: Networking, pp. 195–206 (2008)Google Scholar
  58. 58.
    Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the placement of web server replicas. In: Proceedings IEEE INFOCOM 2001. Conference on computer communications. 20th annual joint conference of the IEEE computer and communications society (Cat. No.01CH37213), vol. 3, pp. 1587-1596. (2001)
  59. 59.
    Rabin, M.: Efficient dispersal of information for security, load balancing and fault tolerance. J. ACM 36, 335–348 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Rabinovich, M., Rabinovich, I., Rajaraman, R., Aggarwal, A.: A dynamic object replication and migration protocol for an internet hosting service. In: Proceedings. 19th IEEE international conference on distributed computing systems (Cat. No.99CB37003), pp. 101–113. (1999)
  61. 61.
    Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Annals of Mathematics, pp. 929–975 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Rosenwein, M.B.: Discrete location theory. In: Mirchandani, P.B., Francis, R.L. (eds.) . Networks 24(2):124–125, p 555. Wiley, New York (1990)CrossRefGoogle Scholar
  63. 63.
    Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale, persistent peer-to-peer storage utility. In: Proceedings of the 18th ACM symposium on operating systems principles, SOSP ’01., pp 188–201. ACM, New York (2001)
  64. 64.
    Saito, Y., Karamanolis, C., Karlsson, M., Mahalingam, M.: Taming aggressive replication in the pangaea wide-area file system. SIGOPS Oper. Syst. Rev. 36(SI), 15–30 (2002). CrossRefGoogle Scholar
  65. 65.
    Schrijver, A.: Combinatorial optimization (3 Vol.) Springer-Verlag, Berlin (2003)zbMATHGoogle Scholar
  66. 66.
    Shokrollahi, A.: Raptor codes. In: IEEE Trans Inf Theory, pp. 2551–2567 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Tang, X., Chanson, S.T.: Coordinated en-route web caching. IEEE Trans. Comput. 51(6), 595–607 (2002). CrossRefGoogle Scholar
  68. 68.
    Tewari, R., Dahlin, M., Vin, H.M., Kay, J.S.: Design Considerations for Distributed Caching on the Internet. In: ICDCS, pp 273–284 (1999)Google Scholar
  69. 69.
    Tsaknakis, H., Spirakis, P.G., Kanoulas, D.: Performance evaluation of a descent algorithm for bi-matrix games. In: Internet and network economics, 4th international workshop, WINE 2008, Shanghai, China, December 17-20, 2008. Proceedings, pp 222–230. (2008)Google Scholar
  70. 70.
    Vetta, A.: Nash equilibria in competitive societies, with applications to facility location traffic routing and auctions. In: FOCS (2002)Google Scholar
  71. 71.
    Wolfson, O., Jajodia, S., Huang, Y.: An Adaptive Data Replication Algorithm. ACM Trans. Database Syst. 22, 255–314 (1997)CrossRefGoogle Scholar
  72. 72.
    Younger, D.H.: Graphs with interlinked directed circuits. In: Proceedings of midwestern symposium on circuit theory, vol. 2, pp. XVI2.1–XVI2.7 (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering ChennaiIndian Institute of Technology MadrasChennaiIndia
  2. 2.Humanoids and Human-Centered Mechatronics LabIstituto Italiano di Tecnologia (IIT)GenoaItaly
  3. 3.School of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations