Slopes of Multidimensional Subshifts

  • Emmanuel Jeandel
  • Etienne MoutotEmail author
  • Pascal Vanier
Part of the following topical collections:
  1. Computer Science Symposium in Russia (2018)


In this paper we study the directions of periodicity of multidimensional subshifts of finite type (SFTs) and of multidimensional effectively closed and sofic subshifts. A configuration of a subshift has a slope of periodicity if it is periodic in exactly one direction, the slope representing that direction. In this paper, we prove that \({{\Sigma }^{0}_{1}}\) sets of non-commensurable \(\mathbb {Z}^{2}\) vectors are exactly the sets of slopes of 2D SFTs and that \({{\Sigma }^{0}_{2}}\) sets of non-commensurable vectors are exactly the sets of slopes of 3D SFTs, and exactly the sets of slopes of 2D and 3D sofic and effectively closed subshifts.


Subshifts SFTs Computability Slopes Periodicity 



The authors would like to particularly thank Ville Salo for some very useful remarks on a previous version of this paper that led to a better exposition and to some corrections.


  1. 1.
    Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Mathematicae 126(1), 35–63 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ballier, A., Jeandel, E.: Structuring multi-dimensional subshifts. arXiv:1309.6289 (2013)
  3. 3.
    Berger, R.: The Undecidability of the Domino Problem. Harvard University, Ph.D. thesis (1964)zbMATHGoogle Scholar
  4. 4.
    Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the American Mathematical Society. The American Mathematical Society (1966)Google Scholar
  5. 5.
    Culik, K. II, Kari, J.: An aperiodic set of Wang cubes. J. Univ. Comput. Sci. 1(10), 675–686 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Durand, B., Romashchenko, A., Shen, A.: Effective closed subshifts in 1d can be implemented in 2d. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6300 LNCS, pp. 208–226 (2010).
  7. 7.
    Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grandjean, A., de Menibus, B.H., Vanier, P.: Aperiodic points in \(\mathbb {Z}^{2}\)-subshifts. In: Automata, Languages, and Programming - 45st International Colloquium, ICALP 2018, Prague, Czech Republic, July 9-13, 2018, Proceedings (2018)Google Scholar
  9. 9.
    Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Siberian Math. J., 319–320 (1972)Google Scholar
  10. 10.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. theory 3(4), 320–375 (1969). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones mathematicae 176(1), 131 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jeandel, E., Rao, M.: An aperiodic set of 11 wang tiles. arXiv:1506.06492 (2015)
  14. 14.
    Jeandel, E., Vanier, P.: Periodicity in tilings. In: Developments in Language Theory (DLT) (2010)Google Scholar
  15. 15.
    Jeandel, E., Vanier, P.: Slopes of tilings. In: Kari, J. (ed.) JAC, pp 145–155. Turku Center for Computer Science (2010)Google Scholar
  16. 16.
    Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergodic Theory Dyn. Syst. 35, 431–460 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21(3), 571–586 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kari, J.: A small aperiodic set of Wang tiles. Discret. Math. 160, 259–264 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Meyerovitch, T.: Growth-type invariants for \(\mathbb {Z}^{d}\) subshifts of finite type and arithmetical classes of real numbers. Inventiones Mathematicae, 184(3). (2010)
  21. 21.
    Moutot, E., Vanier, P.: Slopes of 3-dimensional subshifts of finite type. In: Fomin, F.V., Podolskii, V.V. (eds.) Computer Science - Theory and Applications - 13th International Computer Science Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10846, pp 257–268. Springer (2018),
  22. 22.
    Myers, D.: Non recursive tilings of the plane II. J. Symb. Log. 39(2), 286–294 (1974)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino problem. In: CiE 2008, no. 5028 in Lecture Notes in Computer Science, pp. 476–485 (2008)Google Scholar
  24. 24.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12(3), 177–209 (1971). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rogers, H. Jr: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)Google Scholar
  26. 26.
    Wang, H.: Proving theorems by pattern recognition I. Commun. ACM 3(4), 220–234 (1960). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Campus Scientifique - BP 239Vandoeuvre-les-NancyFrance
  2. 2.Université de Lyon, ENS de Lyon, UCBL, CNRSLIPLyon CedexFrance
  3. 3.Faculté des Sciences et TechnologieCréteil CedexFrance

Personalised recommendations