Advertisement

Theory of Computing Systems

, Volume 64, Issue 2, pp 227–250 | Cite as

Optimal Path Discovery Problem with Homogeneous Knowledge

  • Christopher Thraves Caro
  • Josu DoncelEmail author
  • Olivier Brun
Article
  • 67 Downloads

Abstract

Consider the following problem: given a complete graph G = (V, E), two nodes s and t in V, and a positive hidden value f(e) for each edge eE, discover an st-path P that minimizes the value F(P), for some objective function F. The issue is that the edge values f(⋅) are hidden, hence, to discover an optimal path, it is required to uncover the value of some edges. The goal then is to discover an optimal path by means of uncovering the least possible amount of edge values. This problem, named the Optimal Path Discovery (OPD) problem, is an extension of the well known Shortest Path Discovery problem in which f(e) represents the length of e, and F(P) computes the length of P. In this paper, we study the OPD problem when the only previous information known about the f(⋅) values is that they fall in the interval (0,) for all eE. We first study the number of uncovered edges as a measure to evaluate algorithms. We see that this measure does not differentiate correctly algorithms according to their performance. Therefore, we introduce the query ratio, the ratio between the number of uncovered edges and the least number of edge values required to solve the problem. We prove a 1 + 4/n − 8/n2 lower bound on the query ratio and we present an algorithm whose query ratio, when it finds the optimal path, is upper bounded by 2 − 1/(n − 1), where n = |V |. Finally, we implement different algorithms and evaluate their query ratio experimentally.

Keywords

Optimal path Query ratio Shortest path discovery problem Lower and upper bounds 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PANACEA Project (http://www.panacea-cloud.eu), grant agreement n 610764, from the Marie Sklodowska-Curie grant agreement No 777778, from the Basque Government, Spain, Consolidated Research Group called Mathematical Modeling, Simulation and Industrial Application (MS2I) with the Grant Reference IT649-13 and from the Spanish Ministry of Economy and Competitiveness project with reference MTM2016-76329-R.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications, 1st edn. Prentice Hall (1993)Google Scholar
  2. 2.
    Alon, N., Emek, Y., Feldman, M., Tennenholtz, M.: Economical graph discovery. In: ICS, pp. 476–486 (2011)Google Scholar
  3. 3.
    Aron, I.D., Van Hentenryck, P.: On the complexity of the robust spanning tree problem with interval data. Oper. Res. Lett. 32(1), 36–40 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)CrossRefGoogle Scholar
  5. 5.
    Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Math. Program. 73(2), 129–174 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Davis, H.W., Pollack, R.B., Sudkamp, T.: Towards a better understanding of bidirectioanl search. In: AAAI (1984)Google Scholar
  8. 8.
    de Champeaux, D.: Bidirectional heuristic search again. J. ACM 30(1), 22–32 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheapest set problems under uncertainty. Theor. Comput. Sci. 613(C), 51–64 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty. SIAM J. Comput. 32(2), 538–547 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing shortest paths with uncertainty. J. Algor. 62(1), 1–18 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  14. 14.
    Ford, L.R.: Network flow theory. Technical Report Paper P-923, RAND Corporation, Santa Monica, California (1956)Google Scholar
  15. 15.
    Ghosh, S., Mahanti, A.: Bidirectional heuristic search with limited resources. Inf. Process. Lett. 40(6), 335–340 (1991)CrossRefGoogle Scholar
  16. 16.
    Hart, P. E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. In: IEEE Transactions on Systems Science and Cybernetics, pp. 100–107 (1968)CrossRefGoogle Scholar
  17. 17.
    Hoffmann, M., Erlebach, T., Krizanc, D., Mihal’ák, M., Raman, R.: Computing minimum spanning trees with uncertainty. In: 25th International Symposium on Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs), pp. 277–288. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)Google Scholar
  18. 18.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91, pp. 265–277. ACM (1991)Google Scholar
  20. 20.
    Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97(5), 177–180 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Khanna, S., Tan, W.-C.: On computing functions with uncertainty. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’01, pp. 171–182. ACM (2001)Google Scholar
  22. 22.
    Korf, R.E., Kumar, V.: Optimal path-finding algorithms. In: Kanal, L. (ed.) Search in Artificial Intelligence, Symbolic Computation, pp 223–267. Springer, New York (1988)CrossRefGoogle Scholar
  23. 23.
    Lippi, M., Ernandes, M., Felner, A.: Efficient single frontier bidirectional search. In: Proceeding of the Forth International Symposium on Combinatorial Search (2012)Google Scholar
  24. 24.
    Luby, M., Ragde, P.: A bidirectional shortest-path algorithm with good average-case behavior. Algorithmica 4(1–4), 551–567 (1989)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Montemanni, R., Gambardella, L.M.: An algorithm for the relative robust shortest path problem with interval data. Technical Report IDSIA-05-02 Dalle Molle Institute for Artificial Intelligence (2002)Google Scholar
  26. 26.
    Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation queries over replicated data. In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00, pp. 144–155. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
  27. 27.
    Karasan, H.Y.O.E., Pinar, M.C.: The robust shortest path problem with interval data. Technical report, Bilkent University, Department of Industrial Engineering (2001)Google Scholar
  28. 28.
    Pohl, I.: Bi-Directional and Heuristics Search in Path Problems. PhD thesis, Standford University (1969)Google Scholar
  29. 29.
    Szepesvári, C.: Shortest path discovery problems: A framework, algorithms and experimental results. In: AAAI, pp. 550–555 (2004)Google Scholar
  30. 30.
    Yaman, H., Karasan, O.E., Pinar, M.C.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29(1), 31–40 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Brun, O., Wang, L., Gelenbe, E.: Big data for autonomic intercontinental overlays. IEEE J. Selected Areas Commun., 34(3) (2016)CrossRefGoogle Scholar
  32. 32.
    Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A, van der Merwe, J.: The case for separating routing from routers. In: Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, pp 5–12. ACM, Portland (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónCasillaChile
  2. 2.Applied Mathematics and Statistics and Operations Research DepartmentUniversity of the Basque CountryLeioaSpain
  3. 3.LAAS-CNRSUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations