Theory of Computing Systems

, Volume 64, Issue 2, pp 227–250

# Optimal Path Discovery Problem with Homogeneous Knowledge

Article

## Abstract

Consider the following problem: given a complete graph G = (V, E), two nodes s and t in V, and a positive hidden value f(e) for each edge eE, discover an st-path P that minimizes the value F(P), for some objective function F. The issue is that the edge values f(⋅) are hidden, hence, to discover an optimal path, it is required to uncover the value of some edges. The goal then is to discover an optimal path by means of uncovering the least possible amount of edge values. This problem, named the Optimal Path Discovery (OPD) problem, is an extension of the well known Shortest Path Discovery problem in which f(e) represents the length of e, and F(P) computes the length of P. In this paper, we study the OPD problem when the only previous information known about the f(⋅) values is that they fall in the interval (0,) for all eE. We first study the number of uncovered edges as a measure to evaluate algorithms. We see that this measure does not differentiate correctly algorithms according to their performance. Therefore, we introduce the query ratio, the ratio between the number of uncovered edges and the least number of edge values required to solve the problem. We prove a 1 + 4/n − 8/n2 lower bound on the query ratio and we present an algorithm whose query ratio, when it finds the optimal path, is upper bounded by 2 − 1/(n − 1), where n = |V |. Finally, we implement different algorithms and evaluate their query ratio experimentally.

## Keywords

Optimal path Query ratio Shortest path discovery problem Lower and upper bounds

## References

1. 1.
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications, 1st edn. Prentice Hall (1993)Google Scholar
2. 2.
Alon, N., Emek, Y., Feldman, M., Tennenholtz, M.: Economical graph discovery. In: ICS, pp. 476–486 (2011)Google Scholar
3. 3.
Aron, I.D., Van Hentenryck, P.: On the complexity of the robust spanning tree problem with interval data. Oper. Res. Lett. 32(1), 36–40 (2004)
4. 4.
Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
5. 5.
Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)
6. 6.
Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Math. Program. 73(2), 129–174 (1996)
7. 7.
Davis, H.W., Pollack, R.B., Sudkamp, T.: Towards a better understanding of bidirectioanl search. In: AAAI (1984)Google Scholar
8. 8.
de Champeaux, D.: Bidirectional heuristic search again. J. ACM 30(1), 22–32 (1983)
9. 9.
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
10. 10.
Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheapest set problems under uncertainty. Theor. Comput. Sci. 613(C), 51–64 (2016)
11. 11.
Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty. SIAM J. Comput. 32(2), 538–547 (2003)
12. 12.
Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing shortest paths with uncertainty. J. Algor. 62(1), 1–18 (2007)
13. 13.
Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
14. 14.
Ford, L.R.: Network flow theory. Technical Report Paper P-923, RAND Corporation, Santa Monica, California (1956)Google Scholar
15. 15.
Ghosh, S., Mahanti, A.: Bidirectional heuristic search with limited resources. Inf. Process. Lett. 40(6), 335–340 (1991)
16. 16.
Hart, P. E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. In: IEEE Transactions on Systems Science and Cybernetics, pp. 100–107 (1968)
17. 17.
Hoffmann, M., Erlebach, T., Krizanc, D., Mihal’ák, M., Raman, R.: Computing minimum spanning trees with uncertainty. In: 25th International Symposium on Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs), pp. 277–288. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)Google Scholar
18. 18.
Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)
19. 19.
Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91, pp. 265–277. ACM (1991)Google Scholar
20. 20.
Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97(5), 177–180 (2006)
21. 21.
Khanna, S., Tan, W.-C.: On computing functions with uncertainty. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’01, pp. 171–182. ACM (2001)Google Scholar
22. 22.
Korf, R.E., Kumar, V.: Optimal path-finding algorithms. In: Kanal, L. (ed.) Search in Artificial Intelligence, Symbolic Computation, pp 223–267. Springer, New York (1988)
23. 23.
Lippi, M., Ernandes, M., Felner, A.: Efficient single frontier bidirectional search. In: Proceeding of the Forth International Symposium on Combinatorial Search (2012)Google Scholar
24. 24.
Luby, M., Ragde, P.: A bidirectional shortest-path algorithm with good average-case behavior. Algorithmica 4(1–4), 551–567 (1989)
25. 25.
Montemanni, R., Gambardella, L.M.: An algorithm for the relative robust shortest path problem with interval data. Technical Report IDSIA-05-02 Dalle Molle Institute for Artificial Intelligence (2002)Google Scholar
26. 26.
Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation queries over replicated data. In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00, pp. 144–155. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
27. 27.
Karasan, H.Y.O.E., Pinar, M.C.: The robust shortest path problem with interval data. Technical report, Bilkent University, Department of Industrial Engineering (2001)Google Scholar
28. 28.
Pohl, I.: Bi-Directional and Heuristics Search in Path Problems. PhD thesis, Standford University (1969)Google Scholar
29. 29.
Szepesvári, C.: Shortest path discovery problems: A framework, algorithms and experimental results. In: AAAI, pp. 550–555 (2004)Google Scholar
30. 30.
Yaman, H., Karasan, O.E., Pinar, M.C.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29(1), 31–40 (2001)
31. 31.
Brun, O., Wang, L., Gelenbe, E.: Big data for autonomic intercontinental overlays. IEEE J. Selected Areas Commun., 34(3) (2016)
32. 32.
Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A, van der Merwe, J.: The case for separating routing from routers. In: Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, pp 5–12. ACM, Portland (2004)Google Scholar

## Authors and Affiliations

• Christopher Thraves Caro
• 1
• Josu Doncel
• 2
• Olivier Brun
• 3
1. 1.Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónCasillaChile
2. 2.Applied Mathematics and Statistics and Operations Research DepartmentUniversity of the Basque CountryLeioaSpain
3. 3.LAAS-CNRSUniversité de Toulouse, CNRSToulouseFrance