Theory of Computing Systems

, Volume 63, Issue 3, pp 394–417 | Cite as

Computing Parameters of Sequence-Based Dynamic Graphs

  • Arnaud Casteigts
  • Ralf KlasingEmail author
  • Yessin M. Neggaz
  • Joseph G. Peters


We present a general framework for computing parameters of dynamic networks which are modelled as a sequence \({\mathcal {G}}=(G_{1},G_{2},\ldots ,G_{\delta })\) of static graphs such that \(G_{i}=(V,E_{i})\) represents the network topology at time i and changes between consecutive static graphs are arbitrary. The framework operates at a high level, manipulating the graphs in the sequence as atomic elements with two types of operations: a composition operation and a test operation. The framework allows us to compute different parameters of dynamic graphs using a common high-level strategy by using composition and test operations that are specific to the parameter. The resulting algorithms are optimal in the sense that they use only \(O(\delta )\) composition and test operations, where \(\delta \) is the length of the sequence. We illustrate our framework with three minimization problems, bounded realization of the footprint, temporal diameter, and round trip temporal diameter, and with T-interval connectivity which is a maximization problem. We prove that the problems are in NC by presenting polylogarithmic-time parallel versions of the algorithms. Finally, we show that the algorithms can operate online with amortized complexity \({\Theta }(1)\) composition and test operations for each graph in the sequence.


Dynamic networks Property testing Generic algorithms Temporal connectivity 



We thank the anonymous referees for their careful reading and valuable comments which helped to improve the presentation of the paper.


  1. 1.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: Foremost waypoint coverage of time-varying graphs. In: Proceedings of the 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2014), LNCS, vol. 8747, pp 29–41. Springer (2014)Google Scholar
  2. 2.
    Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an eventually connected network. In: Proceedings of the third annual ACM symposium on Principles of distributed computing (PODC), pp 278–281. ACM (1984)Google Scholar
  3. 3.
    Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Testing temporal connectivity in sparse dynamic graphs. CoRR arXiv:1404.7634. (A French version appeared in Proceedings of ALGOTEL 2014.) (2014)
  4. 4.
    Bondhugula, U., Devulapalli, A., Fernando, J., Wyckoff, P., Sadayappan, P.: Parallel FPGA-based all-pairs shortest-paths in a directed graph. In: Proceedings of the 20th International Parallel and Distributed Processing Symposium. IEEE (2006)Google Scholar
  5. 5.
    Bournat, M., Datta, A., Dubois, S.: Self-Stabilizing Robots in Highly Dynamic Environments. In: SSS 2016 - 18th International Symposium Stabilization, Safety, and Security of Distributed Systems, LNCS, vol. 10083, pp 54–69. Springer (2016)Google Scholar
  6. 6.
    Bramas, Q., Tixeuil, S.: The complexity of data aggregation in static and dynamic wireless sensor networks. Inf. Comput. 255, 369–383 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braud-Santoni, N., Dubois, S., Kaaouachi, M.H., Petit, F.: The next 700 impossibility results in time-varying graphs. Int. J. Netw. Comput. 6(1), 27–41 (2016)CrossRefGoogle Scholar
  8. 8.
    Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assumptions of distributed algorithms in dynamic networks. In: Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2009), LNCS, vol. 5869, pp 126–140. Springer (2009)Google Scholar
  10. 10.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. IEEE Trans. Comput. 63(2), 397–410 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  13. 13.
    Casteigts, A., Klasing, R., Neggaz, Y.M., Peters, J.G.: Efficiently testing T-interval connectivity in dynamic graphs. In: Proceedings of the 9th International Conference on Algorithms and Complexity (CIAC 2015), LNCS, vol. 9079, pp 89–100. Springer (2015)Google Scholar
  14. 14.
    Casteigts, A., Klasing, R., Neggaz, Y.M., Peters, J.G.: A generic framework for computing parameters of sequence-based dynamic graphs. In: Proceedings of the 24th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2017), LNCS, vol. 10641, pp 321–338. Springer (2017)Google Scholar
  15. 15.
    Dubois, S., Kaaouachi, M.H., Petit, F.: Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems. In: Symposium on Self-Stabilizing Systems, pp 51–66. Springer (2015)Google Scholar
  16. 16.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  18. 18.
    Godard, E., Mazauric, D.: Computing the dynamic diameter of non-deterministic dynamic networks is hard. In: Proceedings of the 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS 2014), LNCS, vol. 8847, pp 88–102. Springer (2014)Google Scholar
  19. 19.
    Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proceedings of SIGCOMM, pp 145–158 (2004)Google Scholar
  20. 20.
    JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  21. 21.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of STOC, pp 513–522. ACM (2010)Google Scholar
  22. 22.
    Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. Theor. Comput. Sci. 554, 217–228 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Neggaz, Y.M.: Automatic classification of dynamic graphs. Ph.D. thesis, University of Bordeaux. (2015)
  24. 24.
    O’Dell, R., Wattenhofer, R.: Information Dissemination in Highly Dynamic Graphs. In: Proceedings of DIALM-POMC, pp 104–110. ACM (2005)Google Scholar
  25. 25.
    Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for recurrent dynamic systems. In: Proceedings of the 28th IEEE International Conference on Advanced Information Networking and Applications (AINA 2014), pp 933–939. IEEE (2014)Google Scholar
  26. 26.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal reachability graphs. In: Proceedings of MOBICOM, pp 377–388. ACM (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arnaud Casteigts
    • 1
  • Ralf Klasing
    • 1
    Email author
  • Yessin M. Neggaz
    • 2
  • Joseph G. Peters
    • 3
  1. 1.LaBRI, CNRSUniversity of BordeauxTalenceFrance
  2. 2.LAAS-CNRSINSA-ToulouseToulouseFrance
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations