Advertisement

Theory of Computing Systems

, Volume 62, Issue 8, pp 1690–1714 | Cite as

Revisiting Connected Vertex Cover: FPT Algorithms and Lossy Kernels

  • R. Krithika
  • Diptapriyo MajumdarEmail author
  • Venkatesh Raman
Article

Abstract

The Connected Vertex Cover problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumptions) when parameterized by the solution size. In a recent paper, Lokshtanov et al. [STOC 2017], have shown an α-approximate kernel for the problem for every α > 1, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for Connected Vertex Cover for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. Our first result is a lossy kernel for Connected Vertex Cover parameterized by the size of a split deletion set. Let n denote the number of vertices in the input graph. We show that
  • Connected Vertex Cover parameterized by the size k of a split deletion set admits an α-approximate kernel with \(\mathcal {O}(k+(2k+\lceil \frac {2\alpha -1}{\alpha -1} \rceil )^{\lceil \frac {2\alpha -1}{\alpha -1} \rceil })\) vertices and an algorithm with \(\mathcal {O}(3^{k} n^{\mathcal {O}(1)})\) running time.

  • For the special case when the split deletion set is a clique deletion set, the algorithm runs in \({\mathcal O}(2^{k} n^{{\mathcal O}(1)})\) time and the lossy kernel has \(\mathcal {O}(k + \lceil \frac {2\alpha -1}{\alpha -1} \rceil )\) vertices.

To the best of our knowledge, this (approximate) kernel is one of the few lossy kernels for problems parameterized by a structural parameter (that is not solution size). We extend this lossy kernelization to Connected Vertex Cover parameterized by an incomparable parameter, and that is the size of a clique cover. We show that
  • Connected Vertex Cover parameterized by the size k of a clique cover is W[1]-hard but admits an α-approximate kernel with \(\mathcal {O}(k \lceil \frac {2\alpha -1}{\alpha -1} \rceil )\) vertices for every α > 1. This is one of the few problems that are not FPT but admit a lossy kernel.

Finally, we consider the size of a cluster deletion set as parameter. We show that
  • Connected Vertex Cover parameterized by the size k of a cluster deletion set is FPT via an algorithm with running time \({\mathcal O}(4^{k} n^{{\mathcal O}(1)})\). It also admits an α-approximate kernel with \(\mathcal {O}(k^{2}+\lceil \frac {2\alpha -1}{\alpha -1} \rceil \cdot \frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })\) vertices for every α > 1.

  • For the special case when the cluster deletion set is a degree-1 modulator, the FPT algorithm runs in \({\mathcal O}(3^{k} n^{{\mathcal O}(1)})\) time and the lossy kernel has \(\mathcal {O}(k^{2}+\frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })\) vertices.

Keywords

Parameterized complexity Connected vertex cover Lossy kernelization Structural parameterization W-hardness 

References

  1. 1.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1-2), 123–134 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by Treewidth. Inf. Comput. 243, 86–111 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Jansen, B.M.P.: Vertex cover kernelization revisited: upper and lower bounds for a refined parameter. Theory Comput. Syst. 63(2), 263–299 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cygan, M.: Deterministic Parameterized Connected Vertex Cover. In: Proceedings of the 13Th Scandinavian Workshop on Algorithm Theory (SWAT), pp 95–106 (2012)Google Scholar
  8. 8.
    Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5-6), 179–182 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Diestel, R.: Graph Theory, Graduate Text in Mathematics. Springer, Berlin (2012)Google Scholar
  12. 12.
    Dom, M., Lokshatanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Escoffier, B., Gourvès, L., Monno, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algoritms 8(1), 36–49 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., Bedford (1979)zbMATHGoogle Scholar
  16. 16.
    Golumbic, M.C.: Algorithmic Graph Theory for Perfect Graphs. Springer, Berlin (2004)zbMATHGoogle Scholar
  17. 17.
    Jansen, B.M.P.: The Power of Data Reduction: Kernels for Fundamental Graph Problems. PhD Thesis, Utrecht University, The Netherlands (2013)Google Scholar
  18. 18.
    Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jansen, B.M.P., Kratsch, S.: Data reduction for coloring problems. Inf. Comput. 231, 70–88 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of the 49Th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp 224–237 (2017)Google Scholar
  23. 23.
    Moser, H.: Exact Algorithms for Generalizations of Vertex Cover. Master’s Thesis, Institut für Informatik, Friedrich-Schiller-Universität (2005)Google Scholar
  24. 24.
    Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret. Math. 72, 355–360 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wu, B.Y.: A measure and conquer Based approach for the parameterized hounded degree-one vertex deletion. In: Proceedings of the 21St International Computing and Combinatorics Conference (COCOON), pp 469–480 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Krithika
    • 1
  • Diptapriyo Majumdar
    • 1
    Email author
  • Venkatesh Raman
    • 1
  1. 1.The Institute of Mathematical SciencesHBNIChennaiIndia

Personalised recommendations