Theory of Computing Systems

, Volume 61, Issue 4, pp 1353–1375 | Cite as

Layerwise Computability and Image Randomness

  • Laurent Bienvenu
  • Mathieu Hoyrup
  • Alexander Shen


Algorithmic randomness theory starts with a notion of an individual random object. To be reasonable, this notion should have some natural properties; in particular, an object should be random with respect to the image distribution F(P) (for some distribution P and some mapping F) if and only if it has a P-random F-preimage. This result (for computable distributions and mappings, and Martin-Löf randomness) was known for a long time (folklore); for layerwise computable mappings it was mentioned in Hoyrup and Rojas (2009, Proposition 5) (even for more general case of computable metric spaces). In this paper we provide a proof and discuss the related quantitative results and applications.


Algorithmic randomness Randomness conservation Layerwise computability Image randomness 



We are grateful to our colleagues in ESCAPE group (LIRMM, Montpellier), Kolmogorov seminar (Moscow), and the participants of Singapore and Heidelberg workshops, especially Jason Rute, who allowed us to include his result in the paper, for interesting discussions. We also thank the anonymous referees for their comments, suggestions, and meticulous corrections.


  1. 1.
    Barmpalias, G., Broadhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic randomness and closed sets. J. Logic Comput. 17(6), 1041–1062 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bienvenu, L., Gács, P. , Hoyrup, M., Rojas, C., Shen, A.: Algorithmic tests and randomness with respect to a class of measures. Proc. Steklov Inst. Math. 274, 34–89 (2011). arXiv:1103.1529 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bienvenu, L., Romashchenko, A., Shen, A.: Sparse sets, Journées Automates Cellulaires 2008 (Uzes), 18–28.
  4. 4.
    Diamondstone, D., Kjos-Hanssen, B.: Martin-Löf randomness and Galton–Watson processes. Ann. Pure Appl. Logic 163(5), 519–529 (2012). arXiv:1408.2875 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hoyrup, M., Rojas, C.: An Application of Martin-Löf Randomness to Effective Probability Theory, Mathematical Theory and Computational Practice, 5th Conference on Computability in Europe, CiE 2009, Heidelberg, Germany, July 19–24. Proceedings (Lecture Notes in Computer Science, v. 5635), pp. 260-269 (2009)Google Scholar
  6. 6.
    Hoyrup, M., Rojas, C.: An Application of Effective Probability Theory to Martin-Löf Randomness, 36th International Colloquium on Automata, Languages and Programming, July 5–12. Rhodes, Greece. Proceedings (Lecture Notes in Computer Science, v. 5555), pp. 549–561 (2009)Google Scholar
  7. 7.
    Mann, I.: Probabilistic recursive functions. Trans. Am. Math. Soc. 177, 447–467 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Martin-Löf, P.: The definition of random sequences. Inf. Control (now Information and Computation) 9, 602–619 (1966)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Miller, J.S., Rute, J.: Energy Randomness. arXiv:1509.00524
  10. 10.
    Rumyantsev, A.: Infinite computable version of Lovasz Local Lemma, preprint. arXiv:1012.0557 (2010)
  11. 11.
    Rumyantsev, A., Shen, A.: Probabilistic Constructions of Computable Objects and a Computable Version of lovász Local Lemma. Fundamenta Informaticae 32(1), 1–14 (2014)MATHGoogle Scholar
  12. 12.
    Vereshchagin, N., Uspensky, V., Shen, A.: Kolmogorov complexity and algorithmic randomness. MCCME, Moscow (2013). (In Russian; draft English translation is available at Scholar
  13. 13.
    Takahashi, H.: Algorithmic randomness and monotone complexity on product space. Inf. Comput. 209(2), 183–197 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vovk, V., Vyugin, V.: On the empirical validity of the Bayesian method. J. R. Stat. Soc. Ser. B Methodol. 55(1), 253–266 (1993)MathSciNetMATHGoogle Scholar
  15. 15.
    Zvonkin, A., Levin, L.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ. Math. Surv. 25(6:156), 83–124 (1970)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRSUniversité de MontpellierMontpellierFrance
  2. 2.CNRS, Inria, LORIAUniversité de LorraineNancyFrance
  3. 3.Faculty of Computer ScienceNational Research University Higher School of Economics (HSE)MoscowRussia

Personalised recommendations