Advertisement

Theory of Computing Systems

, Volume 61, Issue 4, pp 1084–1127 | Cite as

Towards an Isomorphism Dichotomy for Hereditary Graph Classes

  • Pascal Schweitzer
Article
  • 100 Downloads

Abstract

In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color class size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.

Keywords

Graph isomorphism Modular decomposition Bounded color valence Reductions Forbidden induced subgraphs 

Notes

Acknowledgments

I thank Matasha Mazis for inspiring comments and suggestions.

References

  1. 1.
    Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. In: FSTTCS, pp. 327–337 (2010)Google Scholar
  2. 2.
    Babai, L.: Moderately exponential bound for graph isomorphism. In: FCT, pp. 34–50 (1981)Google Scholar
  3. 3.
    Babai, L.: Automorphism groups, isomorphism, reconstruction. Handbook of Combinatorics, vol 2, pp. 1447–1540. MIT Press (1995)Google Scholar
  4. 4.
    Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: STOC, pp. 684–697. ACM (2016)Google Scholar
  5. 5.
    Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)Google Scholar
  6. 6.
    Bacsó, G., Tuza, Z.: Dominating cliques in \(P_{5},\)-free graphs. Period. Math Hungar. 21(4), 303–308 (1990)Google Scholar
  7. 7.
    Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Combinatorial Theory Ser. B 41(2), 182–208 (1986)Google Scholar
  8. 8.
    Booth, K.S., Colbourn, C.J., Problems Polynomially Equivalent to Graph Isomorphism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo (1979)Google Scholar
  9. 9.
    Brandstädt, A., Kratsch, D.: On the structure of (P\(_{5}\), gem)-free graphs. Discret. Appl. Math. 145(2), 155–166 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Colbourn, M.J., Colbourn, C.J.: Graph isomorphism and self-complementary graphs. SIGACT News 10(1), 25–29 (1978)CrossRefzbMATHGoogle Scholar
  11. 11.
    Curtis, A., Lin, M., McConnell, R., Nussbaum, Y., Soulignac, F., Spinrad, J., Szwarcfiter, J.: Isomorphism of graph classes related to the circular-ones property. Discret. Math. Theor. Comput. Sci. 15(1), 157–182 (2013)Google Scholar
  12. 12.
    Dabrowski, K., Paulusma, D., Clique-width of graph classes defined by two forbidden induced subgraphs. Comput. J. 59(5), 650–666 (2016)CrossRefGoogle Scholar
  13. 13.
    Dabrowski, K.K., Golovach, P.A., Paulusma, D.: Colouring of graphs with ramsey-type forbidden subgraphs. Theor. Comput. Sci. 522, 34–43 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fuhlbrück, F.: Fixed-Parameter Tractability of the Graph Isomorphism and Canonization Problems. Diploma thesis, Humboldt-Universität zu Berlin (2013)Google Scholar
  15. 15.
    Goldberg, M.K.: A nonfactorial algorithm for testing isomorphism of two graphs. Discret. Appl. Math. 6(3), 229–236 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Discret. Appl. Math. 166, 123–130 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs (2012)Google Scholar
  18. 18.
    Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: FOCS, pp 1010–1029. IEEE Computer Society (2015)Google Scholar
  19. 19.
    Gurevich, Y.: From Invariants to Canonization. Bulletin of the EATCS, 63 (1997)Google Scholar
  20. 20.
    Gurevich, Y.: From invariants to canonization. In: Current Trends in Theoretical Computer Science, pp. 327–331. World Scientific (2001)Google Scholar
  21. 21.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Junttila, T.A., Kaski, P.: Conflict propagation and component recursion for canonical labeling. In: TAPAS, pp. 151–162 (2011)Google Scholar
  23. 23.
    Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser Verlag, Basel, Switzerland (1993)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kȯbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: CSR, pp. 216–227 (2008)Google Scholar
  25. 25.
    Král, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: WG, pp. 254–262 (2001)Google Scholar
  26. 26.
    Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden induced subgraphs (2012)Google Scholar
  27. 27.
    Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden induced subgraphs. Discret. Appl. Math. 216, 240–253 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lozin, V.V.: A decidability result for the dominating set problem. Theor. Comput. Sci. 411(44–46), 4023–4027 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Miller, G.L.: Isomorphism testing and canonical forms for k-contractable graphs (a generalization of bounded valence and bounded genus). In: FCT, pp. 310–327 (1983)Google Scholar
  31. 31.
    Nakano, S.-i., Uehara, R., Uno, T.: A new approach to graph recognition and applications to distance-hereditary graphs. J. Comput. Sci. Technol. 24(3), 517–533 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Otachi, Y., Schweitzer, P.: Isomorphism on subgraph-closed graph classes: A complexity dichotomy and intermediate graph classes. In: ISAAC, pp. 111–118 (2013)Google Scholar
  33. 33.
    Rao, M.: Decomposition of (gem,co-gem)-free graphs. Unpublished available at http://www.labri.fr/perso/rao/publi/decompgemcogem.ps (2007)
  34. 34.
    Schweitzer, P.: Problems of Unknown Complexity: Graph isomorphism and Ramsey Theoretic Numbers. PhD thesis. Universität des Saarlandes, Germany (2009)Google Scholar
  35. 35.
    Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. In: Mayr, E. W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pp. 689–702. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  36. 36.
    Seress, Á.: Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge University Press (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations