Liouville, Computable, Borel Normal and Martin-Löf Random Numbers

Article

Abstract

We survey the relations between four classes of real numbers: Liouville numbers, computable reals, Borel absolutely-normal numbers and Martin-Löf random reals. Expansions of reals play an important role in our analysis. The paper refers to the original material and does not repeat proofs. A characterisation of Liouville numbers in terms of their expansions will be proved and a connection between the asymptotic complexity of the expansion of a real and its irrationality exponent will be used to show that Martin-Löf random reals have irrationality exponent 2. Finally we discuss the following open problem: are there computable, Borel absolutely-normal, non-Liouville numbers?

Keywords

Liouville, computable, normal, and random numbers Kolmogorov complexity Irrationality exponent 

References

  1. 1.
    Abbott, A.: Inapplicability of certain correlations in Borel-normal sequences, manuscript, 2 January 2014, 3 pagesGoogle Scholar
  2. 2.
    Bailey, D.H., Crandall, R.E.: Random generators and normal numbers. Experiment. Math. 11(4), 527–546 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Becher, V., Bugeaud, Y., Slaman, T.A.: The irrationality exponents of computable numbers. Proceedings of the American Mathematical Society 144, 1509–1521 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Becher, V., Heiber, P., Slaman, T.A.: A polynomial-time algorithm for computing absolutely normal numbers. Information and Computation 232, 1–9 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Becher, V., Heiber, P., Slaman, T.A.: A computable absolutely normal Liouville number. Math. Comput. 86, 2939–2952 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borel, É. : Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)CrossRefMATHGoogle Scholar
  7. 7.
    Borwein, J., van der Poorten, A., Shallit, J., Zudilin, W.: Neverending Fractions. an Introduction to Continued Fractions. Cambridge University Press, Cambridge (2014)CrossRefMATHGoogle Scholar
  8. 8.
    Bugeaud, Y.: Nombres de Liouville et nombres normaux. C. R. Acad. Sci. Paris, Ser. I 335, 117–120 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Calude, C.S.: Information and Randomness—An Algorithmic Perspective, 2nd ed. Springer, Berlin (2002)MATHGoogle Scholar
  10. 10.
    Calude, C., Chiţescu, I.: Random sequences: some topological and measure-theoretical properties. An. Univ. Bucureşti Mat.-Inf. 2, 27–32 (1988)MathSciNetMATHGoogle Scholar
  11. 11.
    Calude, C., Jürgensen, H., Rozenberg, G.: Randomness as an invariant for number representations. In: Maurer, H., Karhumäki, J. (eds.) Results and Trends in Theoretical Computer Science, Lecture Notes in Comput. Sci., Vol. 812, pp. 44–66. Springer-Verlag, Berlin (1994)CrossRefGoogle Scholar
  12. 12.
    Calude, C.S., Marcus, S., Staiger, L.: A topological characterization of random sequences, Inform. Process. Lett. 88, 245–250 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Appl. Pur. Log. 138, 20–30 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 8, 254–260 (1933)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Coons, M.: Addendum to: On the rational approximation of the sum of the reciprocals of the Fermat numbers. Ramanujan J. 37(1), 109–111 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    de Bruijn, N.: A combinatorial problem. Proc. Kon. Nederl. Akad. Wetensch. 49, 758–764 (1946)MATHGoogle Scholar
  17. 17.
    Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Edgar, G.: Measure, Topology, and Fractal Geometry. Springer, New York (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Falconer, K.: Fractal Geometry. Wiley, New York (1990)MATHGoogle Scholar
  20. 20.
    Hall, M. Jr.: Combinatorial Theory. Blaisdell, Waltham (1967)MATHGoogle Scholar
  21. 21.
    Hertling, P., Weihrauch, K.: Random elements in effective topological spaces with measure. Information and Computation 181(1), 32–56 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jarník, V.: Diophantische Approximationen und Hausdorffsches Maß. Rec. Math. Moscou 36, 371–382 (1929)MATHGoogle Scholar
  23. 23.
    Jürgensen, H., Thierrin, G.: Some structural properties of ú-languages 13th Nat. School with Internat. Participation “Applications of Mathematics in Technology”, pp. 56–63, Sofia (1988)Google Scholar
  24. 24.
    Kaufman, R.: On the theorem of Jarník and Besicovitch. Acta Arithmetica 39, 265–267 (1981)MathSciNetMATHGoogle Scholar
  25. 25.
    Knight, M.J.: An “Oceans of Zeros” proof that a certain Non-Liouville number is transcendental. American Mathematical Monthly 98(10), 947–949 (1991)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kolmogorov, A.N.: Logical basis for information theory and probability theory. IEEE Trans. Inform. Theory 14, 662–664 (1968)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Liouville, J.: Mémoires et Communications des Membres et des Correspondants de l’Académie. C. R. Acad. Sci. 18, 883–885 (1844)Google Scholar
  28. 28.
    Maillet, E.: Sur les nombres quasi-rationnels et les fractions arithmétiques ordinaires ou continues quasi-périodiques. C. R. Acad. Sci. Paris 138, 410–411 (1904)MATHGoogle Scholar
  29. 29.
    Martin, G.: Absolutely abnormal numbers. American Mathematical Monthly 108(8), 746–754 (2001)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Martin-Löf, P.: The definition of random sequences. Inf. Control. 9, 602–619 (1966)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mielke, J.: Refined bounds on Kolmogorov complexity for ω-languages. Electr. Notes Theor. Comput. Sci. 221, 181–189 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Nandakumar, S., Vangapelli, S.K.: Normality and finite-state dimension of Liouville numbers. Theory of Computing Systems 58, 392–402 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Oxtoby, J.C.: Measure and Category, 2nd ed. Springer-Verlag, Berlin (1980)CrossRefMATHGoogle Scholar
  34. 34.
    Ya, B.: Ryabko. Noiseless coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)MathSciNetGoogle Scholar
  35. 35.
    Schneider, T.: Einführung in Die Transzendenten Zahlen. Springer-Verlag, Berlin (1957)CrossRefMATHGoogle Scholar
  36. 36.
    Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103, 159–194 (1993)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Staiger, L.: The Kolmogorov complexity of real numbers, Theoret. Comput. Sci. 284, 455–466 (2002)MathSciNetMATHGoogle Scholar
  38. 38.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand
  2. 2.Institut für InformatikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations