Advertisement

Theory of Computing Systems

, Volume 62, Issue 3, pp 653–681 | Cite as

Prediction of Infinite Words with Automata

  • Tim Smith
Article

Abstract

In the classic problem of sequence prediction, a predictor receives a sequence of values from an emitter and tries to guess the next value before it appears. The predictor masters the emitter if there is a point after which all of the predictor’s guesses are correct. In this paper we consider the case in which the predictor is an automaton and the emitted values are drawn from a finite set; i.e., the emitted sequence is an infinite word. We examine the predictive capabilities of finite automata, pushdown automata, stack automata (a generalization of pushdown automata), and multihead finite automata. We relate our predicting automata to purely periodic words, ultimately periodic words, and multilinear words, describing novel prediction algorithms for mastering these sequences.

Keywords

Sequence prediction Automaton Infinite word 

Notes

Acknowledgments

I would like to thank my Ph.D. advisor at Northeastern, Rajmohan Rajaraman, for his helpful comments and suggestions. The continuation of this work at Marne-la-Vallée was supported by the Agence Nationale de la Recherche (ANR) under the project EQINOCS (ANR-11-BS02-004).

References

  1. 1.
    Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) Algorithmic Learning Theory, Lecture Notes in Computer Science, vol. 8776, pp 125–139. Springer International Publishing (2014). doi: 10.1007/978-3-319-11662-4_10
  2. 2.
    Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput. Surv. 15(3), 237–269 (1983). doi: 10.1145/356914.356918 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blackwell, D.: Minimax vs. Bayes prediction. Probab. Eng. Inf. Sci. 9, 53–58 (1995). doi: 10.1017/S0269964800003685. http://journals.cambridge.org/article_S0269964800003685 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control. 28(2), 125–155 (1975). doi: 10.1016/S0019-9958(75)90261-2. http://www.sciencedirect.com/science/article/pii/S0019995875902612
  5. 5.
    Broglio, A., Liardet, P.: Predictions with Automata. In: Symbolic Dynamics and Its Applications, Contemporary Mathematics, vol. 135, pp 111–124. American Mathematical Society (1992)Google Scholar
  6. 6.
    Cerruti, U., Giacobini, M., Liardet, P.: Prediction of binary sequences by evolving finite state machines. In: Collet, P., Fonlupt, C., Hao, J.K., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, Lecture Notes in Computer Science, vol. 2310, pp 42–53. Springer, Berlin (2002). doi: 10.1007/3-540-46033-0_4 Google Scholar
  7. 7.
    Drucker, A.: High-confidence predictions under adversarial uncertainty. TOCT 5(3), 12 (2013). doi: 10.1145/2493252.2493257 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of Streams. Integers, Electron. J. Comb. Number Theory 11B(A6), 1–40 (2010). Proc.Leiden Numeration ConfMATHGoogle Scholar
  9. 9.
    Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE Trans. Inf. Theory 38, 1258–1270 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967). doi: 10.1145/321386.321403 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Inf. Control. 10(5), 447–474 (1967). http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.html MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hibbard, B.: Adversarial sequence prediction. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp. 399–403. IOS Press, Amsterdam, The Netherlands, The Netherlands. http://dl.acm.org/citation.cfm?id=1566174.1566212 (2008)
  13. 13.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theor. Comput. Sci. 412(1-2), 83–96 (2011). doi: 10.1016/j.tcs.2010.08.024 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hromkovič, J.: One-way multihead deterministic finite automata. Acta Inform. 19(4), 377–384 (1983). doi: 10.1007/BF00290734 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Johansen, P.: Inductive inference of ultimately periodic sequences. BIT Numer. Math. 28(3), 573–580 (1988). doi: 10.1007/BF01941135 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leblanc, B., Lutton, E., Allouche, J.P.: Inverse problems for finite automata: A solution based on genetic algorithms. In: Hao, J.K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) Artificial Evolution, Lecture Notes in Computer Science, vol. 1363, pp 157–166. Springer, Berlin (1998). doi: 10.1007/BFb0026598 Google Scholar
  17. 17.
    Legg, S.: Is there an elegant universal theory of prediction?. In: Algorithmic Learning Theory, 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings, pp 274–287 (2006). doi: 10.1007/11894841_23
  18. 18.
    Narendra, K.S., Thathachar, M.A.L.: Learning automata: an introduction. Prentice-hall, Inc., Upper Saddle River, NJ, USA (1989)Google Scholar
  19. 19.
    O’Connor, M.G.: An unpredictability approach to finite-state randomness. J. Comput. Syst. Sci. 37(3), 324–336 (1988). doi: 10.1016/0022-0000(88)90011-6 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sedgewick, R., Szymanski, T.G., Yao, A.C.: The complexity of finding cycles in periodic functions. SIAM J. Comput. 11(2), 376–390 (1982). doi: 10.1137/0211030 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Shubert, B.: Games of Prediction of Periodic Sequences. Tech. rep., United States Naval Postgraduate School (1971)Google Scholar
  22. 22.
    Smith, T.: On Infinite Words Determined by Stack Automata. doi: 10.4230/LIPIcs.FSTTCS.2013.413 (2013)
  23. 23.
    Smith, T.: Prediction of Infinite Words with Automata. In: Computer Science — Theory and Applications, CSR 2016. To appear. Springer, Berlin (2016)Google Scholar
  24. 24.
    Solomonoff, R.: A formal theory of inductive inference. part i. Inf. Control. 7(1), 1–22 (1964). doi: 10.1016/S0019-9958(64)90223-2. http://www.sciencedirect.com/science/article/pii/S0019995864902232
  25. 25.
    Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and its Applications Springer (1986)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Northeastern UniversityBostonUSA
  2. 2.Université Paris-Est Marne-la-ValléeChamps-sur-MarneFrance

Personalised recommendations