Theory of Computing Systems

, Volume 60, Issue 1, pp 53–111 | Cite as

Notes on Computable Analysis

  • Michelle PorterEmail author
  • Adam Day
  • Rodney Downey
Part of the following topical collections:
  1. 50th Anniversary


Computable analysis has been part of computability theory since Turing’s original paper on the subject (Turing, Proc. London Math. Sc. 42:230–265, 1936). Nevertheless, it is difficult to locate basic results in this area. A first goal of this paper is to give some new simple proofs of fundamental classical results (highlighting the role of \({{\Pi }_{1}^{0}}\) classes). Naturally this paper cannot cover all aspects of computable analysis, but we hope that this gives the reader a completely self-contained ingress into this area. A second goal is to use tools from effective topology to analyse the Darboux property, particularly a result by Sierpiński, and the Blaschke Selection Theorem.


Computable analysis Computable real Computable real-valued function Markov computable Borel computable Type II computable Darboux property Blaschke Selection Theorem Convex sets 



This work was supported by the Marsden Fund of New Zealand, and a MSc scholarship to Porter. Much of the material is based around Porter’s MSc Thesis supervised by Day and Downey, and for this reason Porter is the first author on the paper.


  1. 1.
    Aberth, O.: Computable analysis McGraw-Hill International Book Company (1980)Google Scholar
  2. 2.
    Aberth, O.: Computable calculus Academic Press (2001)Google Scholar
  3. 3.
    Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing (2012)Google Scholar
  4. 4.
    Banach, S., Mazur, S.: Sur les fonctions calculables. Ann. Soc Pol. de Math 16, 223 (1937)Google Scholar
  5. 5.
    Bishop, E.: Foundations of Constructive Analysis. Academic Press, New York (1967)zbMATHGoogle Scholar
  6. 6.
    Blaschke, W.: Kreis Und Kugel. Veit, Berlin (1916)zbMATHGoogle Scholar
  7. 7.
    Bogoşel, B.: Functions with the intermediate value property. Romanian Mathematical Gazette Series A, 1–2 (2012)Google Scholar
  8. 8.
    Bolzano, B.: Rein analytischer beweis des Lehrsatzes, dass zwischen je zwey werthen, die ein entgegengesetztes resultat gewȧhren, wenigstens eine reelle wurzel der gleichung liege. Gottlieb Haase Sohne Publisher, Prague reprint: 2 edition (1817)Google Scholar
  9. 9.
    Bolzano, B.: Spisy Bernarda Bolzano - Bernard Bolzano’s Schriften Vol. 1. In: Rychlik, K. (ed.) Functionenlehre. Královská Ceská Spolecnost Nauk, Prague (1930)Google Scholar
  10. 10.
    Bolzano, B., Russ, S. (translator): Purely Analytic Proof of the Theorem that between any two Values, which give Results of Opposite Sign, there lies at least one real Root of the Equation. In: The mathematical works of Bernard Bolzano. Oxford University Press, Oxford (2004)Google Scholar
  11. 11.
    Borel, E.: Le calcul des intégrales définies. J. de Mathéatiques pures et appliquées 6(8), 159–210 (1912)zbMATHGoogle Scholar
  12. 12.
    Bourgain, J.: On convergent sequences of continuous functions. Bull. Soc. Math. Belg. Sé,r. B 32(2), 235–249 (1980)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New Comp. Parad., 425–491 (2008)Google Scholar
  14. 14.
    Braverman, M., Yampolsky, M.: Computability of Julia sets. Springer, Berlin (2009)zbMATHGoogle Scholar
  15. 15.
    Braverman, M.: On the complexity of real functions. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp. 155–164. IEEE (2005)Google Scholar
  16. 16.
    Brouwer, L.: Collected Works, Vol I - Philosophy and Foundations of Mathematics. American Elsevier Publishing Company, Amsterdam (1975)zbMATHGoogle Scholar
  17. 17.
    Bruckner, A., Ceder, J., Weiss, M.: Uniform limits of Darboux functions. Coll Math. 15, 65–77 (1966)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Caldwell, J., Pour-El, M.: On a simple definition of computable function of a real variable-with applications to functions of a complex variable. Z. Math Logik Grundlagen Math. 21, 1–19 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ceitin, G.: Algorithmic operators in constructive metric spaces. Tr. Math. Inst. Steklov. 67, 295–361 (1962)MathSciNetGoogle Scholar
  20. 20.
    Conway, J.: Explanation given at Canada/USA Mathcamp (2013)Google Scholar
  21. 21.
    Darboux, G.: Mémoire sur les fonctions discontinues. Ann. Sci. Scuola Norm. 4, 57–122 (1875)Google Scholar
  22. 22.
    Dehn, M.: Transformation der Kurven auf zweiseitigen flächen. Math. Ann. 72(3), 413–421 (1912)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dehn, M., Stillwell, J. (translator): In Papers on group theory and topology, pp 179–199. Springer, New York Inc (1987)Google Scholar
  24. 24.
    Demuth, O.: Necessary and sufficient conditions for Riemann integrability of constructive functions. Dokl. Akad Nauk SSSR 176, 757–758 (1967)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Downey, R. (ed.): Turing’s Legacy: Developments from Turing’s ideas in logic. Cambridge University Press, Cambridge (2014)Google Scholar
  26. 26.
    Downey, R. G., Hirschfeldt, D. R.: Algorithmic randomness and complexity. Springer (2010)Google Scholar
  27. 27.
    Edwards, C.H. Jr.: The Historical Development of Calculus. Springer (1979)Google Scholar
  28. 28.
    Eggleston, H.: Convexity. Cambridge University Press, Cambridge (1977)zbMATHGoogle Scholar
  29. 29. Weierstrass, Karl Theodor Wilhelm (2008)Google Scholar
  30. 30.
    Fowler, D., Robson, E.: Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia Math. 25(4), 366–378 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gödel, K.: On formally undecidable propositions of Principia Mathematica and related systems I (1931). In: Collected Works, Vol. 1: Publications 1929–1936, pp. 144–195. Oxford University Press, New York (1986)Google Scholar
  32. 32.
    Goodstein, R.: Recursive analysis. Dover Publications (Reprint 2010) Amsterdam (1961)Google Scholar
  33. 33.
    Gordon, R.: The integrals of Lebesgue, Denjoy, Perron, and Henstock (vol. 4). Amer. Math. Soc. (1994)Google Scholar
  34. 34.
    Gruber, P., Wills, J. (eds.): Handbook of Convex Geometry Volume A. Elsevier Science Publishers B.V., Amsterdam (1993)Google Scholar
  35. 35.
    Grzegorczyk, A.: Computable functionals. Fund. Math. 42, 168–202 (1955)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hermann, G.: Die frage der endlich vielen schritte in der theorie der polynomideale. Math. Ann. 95, 736–788 (1926)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hermann, G.: The question of finitely many steps in polynomial ideal theory (translation). ACM SIGSAM Bull. 32(3), 8–30 (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Hertling, P.: Banach-Mazur computable functions on metric spaces. In: Blanck, J., Brattka, V., Hertling, P. (eds.) Computability and Complexity in Analysis, volume 2064, pp. 69–81. Springer, Berlin Heidelberg (2001)Google Scholar
  39. 39.
    Hertling, P.: A Banach-Mazur computable but not Markov computable function on the computable real numbers. Ann. Pure Appl. Logic 132(2-3), 227–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ivanov, A.: Blaschke selection theorem (2014)Google Scholar
  41. 41.
    Kleene, S: Introduction to metamathematics. Ishi Press (reprint 2009)Google Scholar
  42. 42.
    Kleene, S.: Countable functionals. North-Holland Publishing Company, Amsterdam (1959)zbMATHGoogle Scholar
  43. 43.
    Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Acta Math. 95, 9–23 (1956)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Math. Reviews 19, 238 (1958)Google Scholar
  45. 45.
    Kreisel, G., Lacombe, D., Shoenfield, J.: Partial recursive functionals and effective operations. In: Heyting, A. (ed.) Construc. in Math., pp. 290–297, Amsterdam, 1959. North-Holland Publishing CompanyGoogle Scholar
  46. 46.
    Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen grossen. J. Reine Angew. Math. 92, 1–123 (1882)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Kronecker, L., Dedekind, R., Molk, J.: Grundzüge Einer Arithmetischen Theorie Der Algebraischen Grössen: a Complete Translation- except Only Abstracts of the First Four Sections. California Institute of Technology, Pasadena, Calif (1900)Google Scholar
  48. 48.
    Kushner, B.: Lectures on constructive mathematical analysis, volume 60 American Mathematical Society (1980)Google Scholar
  49. 49.
    Kuyper, R.: Effective genericity and differentiability. J. Log. Anal. 6(4), 1–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Kuyper, R., Sebastiaan, A.T.: Effective genericity and differentiability. J. Log. Anal. 6(4), 14 (2014)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables éelles II and III (1955)Google Scholar
  52. 52.
    Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I. C.R. Acad. Sci. 240, 2478–2480 (1955)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs applications á l’analyse récursive. C. R. Acad. Sci. Paris 245(13), 1040–1043 (1957)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Markov, A.: On the continuity of constructive functions. Uspehi Mat. Nauk 9, 226–230 (1954)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Markov, A.: On constructive functions. Trudy Math. Inst. Steklov. 52, 315–348 (1958)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Miller, J.: Degrees of unsolvability of continuous functions. J. Symb. Log. 69 (2), 555–584 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Ng, K.M.: Some properties of D.C.E Reals and Their Degrees. National University of Singapore, Master’s thesis (2006)Google Scholar
  58. 58.
    Orevkov, V.: A constructive map of the square into itself which moves every constructive point. Dokl. Akad. Nauk SSSR 152, 55–58 (1963)MathSciNetGoogle Scholar
  59. 59.
    Pour-El, M., Richards, J.: Computability in analysis and physics. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  60. 60.
    Radcliffe, D.: A function that is surjective on every interval. Math. Ass. Amer. 123(1), 1–2 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Rice, H.: Recursive real numbers. Proc. Amer. Math. Soc. 5, 784–791 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Robert I.S.: Recursively enumerable sets and degrees. Springer, New Inc., New York, NY USA (1987)Google Scholar
  63. 63.
    Sierpinski, W.: Sur une propriété de fonctions réelles quelconques définie dans les espaces métriques. Le Matematiche (Catania) 8, 73–78 (1953)zbMATHGoogle Scholar
  64. 64.
    Simpson, S.: Subsystems of second order arithmetic. Cambridge University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  65. 65.
    Specker, E.: Nicht konstruktiv beweisbare satze der analysis. J. Symb. Log. 14, 145–158 (1949)CrossRefzbMATHGoogle Scholar
  66. 66.
    Specker, E.: Der satz vom maximum in der rekursiven analysis. Construc. Math. Proc., Coll:254–265 (1959)Google Scholar
  67. 67.
    Turing, A.: On computable numbers, with an application to the Entsheidungsproblem. Proc. London Math. Sc. 42, 230–265 (1936)zbMATHGoogle Scholar
  68. 68.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. London Math. Sc. 43(2), 544–546 (1937)zbMATHGoogle Scholar
  69. 69.
    Van Rooij, A., Schikhof, W.: A second course on real functions. Cambridge University Press (1982)Google Scholar
  70. 70.
    von Mises, R.: Grundlagen der wahrscheinlichkeitsrechnung. Math. Z. 5, 52–99 (1919)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    von Mises, R.: Richard von Mises, probability, statistics, and truth. Dover Publications (reprint, original Springer: 1928) New York (1957)Google Scholar
  72. 72.
    Weierstrass, K.: Original Works. Weierstrass’ writings were published as Mathematische Werke. 7 vols. Berlin. 1894-1927Google Scholar
  73. 73.
    Zaslavsky, I.: The refutation of some theorems of classical analysis in constructive analysis. Uspehi Mat. Nauk 10, 209–210 (1955)Google Scholar
  74. 74.
    Zaslavsky, I.: Some properties of constructive real numbers and constructive functions. Trudy Math. Inst. Steklov 67, 385–457 (1962)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsVictoria UniversityWellingtonNew Zealand

Personalised recommendations