Advertisement

Theory of Computing Systems

, Volume 59, Issue 1, pp 24–51 | Cite as

On the Parameterised Complexity of String Morphism Problems

  • Henning Fernau
  • Markus L. Schmid
  • Yngve Villanger
Article

Abstract

Given a source string u and a target string w, to decide whether w can be obtained by applying a string morphism on u (i. e., uniformly replacing the symbols in u by strings) constitutes an \(\mathcal {NP}\)-complete problem. We present a multivariate analysis of this problem (and its many variants) from the viewpoint of parameterised complexity theory, thereby pinning down the sources of its computational hardness. Our results show that most parameterised variants of the string morphism problem are fixed-parameter intractable and, apart from some very special cases, tractable variants can only be obtained by considering a large part of the input as parameters, namely the length of w and the number of different symbols in u.

Keywords

String problems String morphisms Parameterised complexity Exponential time hypothesis Pattern languages 

References

  1. 1.
    Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A fixed-parameter algorithm for string-to-string correction. Discret. Optim. 8, 41–49 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching: Algorithms, applications, and a lower bound. In: Proceedings 30th International College on Automata, Languages and Programming, ICALP 2003, LNCS, vol. 2719, pp 929–942 (2003)Google Scholar
  3. 3.
    Amir, A., Nor, I.: Generalized function matching. J. Discret. Algorithm. 5, 514–523 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angluin, D.: Finding patterns common to a set of strings. In: Proceedings 11th Annual ACM Symposium on Theory of Computing, STOC 1979, pp 130–141 (1979)Google Scholar
  5. 5.
    Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J. Comput. Syst. Sci. 52, 28–42 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. Int. J. Found. Comput. Sci 14, 1007–1018 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cesati, M.: The Turing way to parameterized complexity. J. Comput. Syst. Sci. 67, 654–685 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, J., Zhang, F.: On product covering in 3-tier supply chain models: Natural complete problems for W[3] and W[4]. Theor. Comput. Sci. 363(3), 278–288 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Proceedings 16th International Symposium on String Processing and Information Retrieval, SPIRE 2009, LNCS, vol. 5721, pp 295–301 (2009)Google Scholar
  10. 10.
    Downey, R., Fellows, M., Kapron, B., Hallett, M., Wareham, H.: Parameterized complexity of some problems in logic and linguistics (extended abstract). In: Proceedings 2nd Workshop on Structural Complexity and Recursion-theoretic Methods in Logic Programming, LNCS, vol. 813, pp 89–101 (1994)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  12. 12.
    Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-complete. Inf. Process. Lett. 9, 86–88 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 401, 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity analysis. In: Proceedings 24th Annual Symposium on Combinatorial Pattern Matching, CPM 2013, LNCS, vol. 7922, pp 83–94 (2013)Google Scholar
  15. 15.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. In: Proceedings 33rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp 55–66 (2013)Google Scholar
  16. 16.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc., NJ, USA (2006)zbMATHGoogle Scholar
  17. 17.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer (2010)Google Scholar
  18. 18.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. Int. J. Found. Comput. Sci. 17, 601–628 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers And Intractability. W. H. Freeman and Company (1979)Google Scholar
  20. 20.
    Geilke, M., Zilles, S.: Learning relational patterns, vol. 6925, pp 84–98. Proceedings 22nd International Conference on Algorithmic Learning Theory, ALT 2011, LNCS (2011)Google Scholar
  21. 21.
    Harju, T., Karhumäki, J.: Morphisms. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp 439–510. Springer (1997)Google Scholar
  22. 22.
    Ibarra, O., Pong, T.C., Sohn, S.: A note on parsing pattern languages. Pattern Recog. Lett. 16, 179–182 (1995)CrossRefGoogle Scholar
  23. 23.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity J. Comput. Syst. Sci. 63, 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time Hypothesis. EATCS Bullet. 105, 41–72 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Inf. Théor. Appl. 28, 233–253 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67, 757–771 (2003)Google Scholar
  28. 28.
    Reidenbach, D., Schmid, M.L.: A polynomial time match test for large classes of extended regular expressions. In: Proceedings 15th International Conference on Implementation and Application of Automata, CIAA 2010, LNCS, vol. 6482, pp 241–250 (2011)Google Scholar
  29. 29.
    Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. In: Proceedings 6th International Conference on Language and Automata Theory and Applications, LATA 2012, LNCS, vol. 7183, pp 468–479 (2012)Google Scholar
  30. 30.
    Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots — (extended abstract). In: Raphael, B.J., Tang, J. (eds.) Algorithms in Bioinformatics — 12th International Workshop, WABI, LNCS, vol. 7534, pp 149–164. Springer (2012)Google Scholar
  31. 31.
    Schmid, M.L.: On the membership problem for pattern languages and related topics. Ph.D. thesis, Department of Computer Science, Loughborough Univer (2012)Google Scholar
  32. 32.
    Shinohara, T.: Polynomial time inference of pattern languages and its application. In: Proceedings 7th IBM Symposium on Mathematical Foundations of Computer Science, pp 191–209 (1982)Google Scholar
  33. 33.
    Stephan, F., Yoshinaka, R., Zeugmann, T.: On the parameterised complexity of learning patterns. In: Proceedings 26th International Symposium on Computer and Information Sciences, ISCIS 2011, pp 277–281Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Henning Fernau
    • 1
  • Markus L. Schmid
    • 1
  • Yngve Villanger
    • 2
  1. 1.Fachbereich IV – Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations