Theory of Computing Systems

, Volume 58, Issue 2, pp 322–344 | Cite as

Online Scheduling FIFO Policies with Admission and Push-Out

  • Kirill Kogan
  • Alejandro López-Ortiz
  • Sergey I. Nikolenko
  • Alexander V. Sirotkin


We consider the problem of managing a bounded size First-In-First-Out (FIFO) queue buffer, where each incoming unit-sized packet requires several rounds of processing before it can be transmitted out. Our objective is to maximize the total number of successfully transmitted packets. We consider both push-out (when a policy is permitted to drop already admitted packets) and non-push-out cases. We provide worst-case guarantees for the throughput performance of our algorithms, proving both lower and upper bounds on their competitive ratio against the optimal algorithm, and conduct a comprehensive simulation study that experimentally validates predicted theoretical behavior.


Scheduling Buffer management First-in-first-out queueing Switches Online algorithms Competitive analysis 



The work of S.I. Nikolenko was supported by the Basic Research Program of the National Research University Higher School of Economics, 2015, grant no. 78. We also thank the anonymous referees for many useful comments that have allowed us to improve the paper.


  1. 1.
    Aiello, W., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies for differentiated services. J. Algorithms 55(2), 113–141 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. Algorithmica 45(1), 69–90 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. ACM Trans. Algorithms 2(2), 282–295 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  5. 5.
    Brucker, P., Heitmann, S., Hurink, J., Nieberg, T.: Job-shop scheduling with limited capacity buffers. OR Spectrum 28(2), 151–176 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    CAIDA – the cooperative association for internet data analysis. [Online]
  7. 7.
    Cavium: OCTEON II CN68XX multi-core MIPS64 processors, product brief (2010). [Online]
  8. 8.
    Chuprikov, P., Nikolenko, S.I., Kogan, K.: Priority Queueing with Multiple Packet Characteristics. In: IEEE INFOCOM. to appear, pp 1–9 (2015)Google Scholar
  9. 9.
    Cisco: The Cisco QuantumFlow processor, product brief (2010). [Online]
  10. 10.
    Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer management in QoS switches. Algorithmica 53(4), 523–548 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eugster, P., Kogan, K., Nikolenko, S.I., Sirotkin, A.V.: Shared Memory Buffer Management for Heterogeneous Packet Processing. In: IEEE 34th International Conference on Distributed Computing Systems (ICDCS 2014), pp 471–480 (2014)Google Scholar
  12. 12.
    EZChip: NP-4 network processor, product brief (2010). [Online]
  13. 13.
    Goldwasser, M.: A survey of buffer management policies for packet switches. SIGACT News 41(1), 100–128 (2010)CrossRefGoogle Scholar
  14. 14.
    Kesselman, A., Kogan, K.: Nonpreemptive Scheduling of Optical Switches. IEEE Trans. Commun. 55(6), 1212–1219 (2007)CrossRefGoogle Scholar
  15. 15.
    Keslassy, I., Kogan, K., Scalosub, G., Segal, M.: Providing performance guarantees in multipass network processors. IEEE/ACM Trans. Networking 20(6), 1895–1909 (2012)CrossRefGoogle Scholar
  16. 16.
    Kesselman, A., Kogan, K., Segal, M.: Improved competitive performance bounds for CIOQ switches. Algorithmica 63(1–2), 411–424 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kesselman, A., Kogan, K., Segal, M.: Packet mode and QoS algorithms for buffered crossbar switches with FIFO queuing. Distrib. Comput. 23(3), 163–175 (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Kesselman, A., Kogan, K., Segal, M.: Best Effort and Priority Queuing Policies for Buffered Crossbar Switches (2012)Google Scholar
  19. 19.
    Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3), 563–583 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V.: A taxonomy of semi-FIFO policies. In: Proceedings of the 31st IEEE International Performance Computing and Communications Conference (IPCCC 2012), pp 295–304 (2012)Google Scholar
  21. 21.
    Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V., Tugaryov, D.: FIFO queueing policies for packets with heterogeneous processing. In: Proceedings of the 1st Mediterranean Conference on Algorithms (MedAlg 2012), Lecture Notes in Computer Science. arXiv:1204.5443 [cs.NI], vol. 7659, pp 248–260 (2012)
  22. 22.
    Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V.: Multi-queued network processors for packets with heterogeneous processing requirements. In: Proceedings of the Fifth International Conference on Communication Systems and Networks, (COMSNETS), pp 1–10 (2013)Google Scholar
  23. 23.
    Kogan, K., López-Ortiz, A., Nikolenko, S.I., Scalosub, G., Segal, M.: Balancing work and size with bounded buffers. In: Proceedings of the Sixth International Conference on Communication Systems and Networks, (COMSNETS). [Online] arXiv:1202.5755, pp 1–8 (2014)
  24. 24.
    Kogan, K., Nikolenko, S.I., Keshav, S., López-Ortiz, A.: Efficient demand assignment in multi-connected microgrids with a shared central grid. In: SustainIT, pp 1–5 (2013)Google Scholar
  25. 25.
    Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In: STOC, pp 110–119 (1997)Google Scholar
  26. 26.
    Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-time streams. Distrib. Comput. 17(1), 77–89 (2004)CrossRefGoogle Scholar
  27. 27.
    Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theor. Comput. Sci. 130(1), 17–47 (1994)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Muthukrishnan, S.M., Rajaraman, R., Shaheen, A., Gehrke, J.E.: Online scheduling to minimize average stretch. SIAM J. Comput. 34(2), 433–452 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Nikolenko, S.I., Kogan, K.: Single and multiple buffer processing. Encyclopedia of Algorithms, 1–9 (2015)Google Scholar
  30. 30.
    Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Perform. Eval. Rev. 34(4), 52–58 (2007)CrossRefGoogle Scholar
  31. 31.
    Ruiz, R., Vázquez-Rodrígue, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)CrossRefMATHGoogle Scholar
  32. 32.
    Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Oper. Res. 16, 687–690 (1968)CrossRefMATHGoogle Scholar
  33. 33.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wolf, T., Pappu, P., Franklin, M.A.: Predictive scheduling of network processors. Comput. Netw. 41(5), 601–621 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kirill Kogan
    • 1
  • Alejandro López-Ortiz
    • 2
  • Sergey I. Nikolenko
    • 3
    • 4
  • Alexander V. Sirotkin
    • 5
    • 6
  1. 1.IMDEA Networks InstituteMadridSpain
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.Laboratory for Internet StudiesNational Research University Higher School of EconomicsSt. PetersburgRussian Federation
  4. 4.Laboratory of Mathematical LogicSteklov Mathematical Institute at St. PetersburgSt. PetersburgRussian Federation
  5. 5.International Laboratory for Applied Network ResearchNational Research University Higher School of EconomicsMoscowRussia
  6. 6.Theoretical and Interdisciplinary Computer Science LaboratorySt. Petersburg Institute for Informatics and Automation of the RASSt. PetersburgRussia

Personalised recommendations