Theory of Computing Systems

, Volume 57, Issue 2, pp 478–520 | Cite as

An analytic System with a Computable Hyperbolic Sink Whose Basin of Attraction is Non-Computable

Article
  • 74 Downloads

Abstract

In many applications one is interested in finding the stability regions (basins of attraction) of some stationary states (attractors). In this paper we show that one cannot compute, in general, the basins of attraction of even very regular systems, namely analytic systems with hyperbolic asymptotically stable equilibrium points. To prove the main theorems, a new method for embedding a discrete-time system into a continuous-time system is developed.

Keywords

Computability with real numbers Basins of attractions Asymptotically stable equilibrium points Reachability problem 

Notes

Acknowledgments

D. Graça was partially supported via R&D Unit 50008, financed by the applicable financial framework (FCT/MEC through national funds and when applicable co-funded by FEDER - PT2020 partnership agreement).

References

  1. 1.
    Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. W.A. Benjamin (1968)Google Scholar
  2. 2.
    Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)MATHGoogle Scholar
  3. 3.
    Beardon, A.F.: Iteration of Rational Functions. Springer, Berlin Heidelberg New York (1991)CrossRefMATHGoogle Scholar
  4. 4.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Berlin Heidelberg New York (1998)CrossRefGoogle Scholar
  5. 5.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138(1), 67–100 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words, Languages & Combinatorics III. ICWLC 2000, Kyoto (2000)Google Scholar
  7. 7.
    Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of what is Computable, pp. 425–491. Springer, Berlin Heidelberg New York (2008)CrossRefGoogle Scholar
  8. 8.
    Braverman, M.: Computational complexity of euclidean sets: hyperbolic Julia sets are poly-time computable. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) Proceedings of Electronics Notes Theoretical Computer Science 6th Workshop on Computability and Complexity in Analysis (CCA 2004), vol. 120, pp. 17–30. Elsevier, Amsterdam (2005)Google Scholar
  9. 9.
    Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Notices Amer. Math. Soc. 53(3), 318–329 (2006)MathSciNetMATHGoogle Scholar
  10. 10.
    Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Amer. Math. Soc. 19(3), 551–578 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Campagnolo, M., Moore, C.: Upper and lower bounds on continuous-time computation. In: Antoniou, I., Calude, C., Dinneen, M. (eds.) 2nd International Conference on Unconventional Models of Computation - UMC’2K, pp. 135–153. Springer, Berlin Heidelberg New York (2001)CrossRefGoogle Scholar
  12. 12.
    Campagnolo, M.L.: Computational complexity of real valued recursive functions and analog circuits. PhD thesis, Instituto Superior Técnico/Universidade Técnica de Lisboa (2002)Google Scholar
  13. 13.
    Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentiability in analog computers. J. Complex. 16(4), 642–660 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chesi, G.: Estimating the domain of attraction for uncertain polynomial systems. Automatica 40(11), 1981–1986 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Graċa, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Graċa, D.S., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6), 2913–2927 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic, New York (1974)MATHGoogle Scholar
  18. 18.
    Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach–Higher-Dimensional Systems. Springer, Berlin Heidelberg New York (1995)CrossRefGoogle Scholar
  19. 19.
    Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theor. Comput. Sci. 210(1), 217–223 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lang, S.: Calculus of Several Variables, 3rd edn. Springer, Berlin Heidelberg New York (1987)CrossRefGoogle Scholar
  21. 21.
    Matallana, L.G., Blanco, A.M., Bandoni, J.A.: Estimation of domains of attraction: a global optimization approach. Math. Comput. Model. 52(3–4), 574–585 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity 4(2), 199–230 (1991)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Moore, C.: Finite-dimensional analog computers: Flows, maps, and recurrent neural networks. In: Calude, C., Casti, J., Dinneen, M. (eds.) 1st International Conference on Unconventional Models of Computation - UMC’98, pp. 59–71. Springer, Berlin Heidelberg New York (1998)Google Scholar
  24. 24.
    Odifreddi, P.: Classical Recursion Theory, vol. 1. Elsevier, Amsterdam (1989)Google Scholar
  25. 25.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Berlin Heidelberg New York (2001)CrossRefMATHGoogle Scholar
  26. 26.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin Heidelberg New York (1989)CrossRefMATHGoogle Scholar
  27. 27.
    Rettinger, R.: A fast algorithm for julia sets of hyperbolic rational functions. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) Proceedings of Electronics Notes Theoretical Computer Science 6th Workshop on Computability and Complexity in Analysis (CCA 2004), vol. 120, pp. 145–157. Elsevier, Amsterdam (2005)Google Scholar
  28. 28.
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology (2005)Google Scholar
  29. 29.
    Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. (Ser. 2–42), 230–265 (1937)Google Scholar
  31. 31.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. a correction. Proc. London Math. Soc. (Ser. 2–43), 544–546 (1938)Google Scholar
  32. 32.
    Weihrauch, K.: Computable Analysis: an Introduction. Springer, Berlin Heidelberg New York (2000)CrossRefGoogle Scholar
  33. 33.
    Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. 137, 2773–2783 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.CEDMES/FCT, Universidade do AlgarveFaroPortugal
  2. 2.SQIG - Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.DMS, University of CincinnatiCincinnatiUSA

Personalised recommendations