Theory of Computing Systems

, Volume 56, Issue 1, pp 197–219 | Cite as

Advice Complexity of Maximum Independent set in Sparse and Bipartite Graphs

  • Stefan Dobrev
  • Rastislav Královič
  • Richard Královič


We study the advice complexity of the online version of the Maximum Independent Set problem, restricted to the sparse, and bipartite graphs, respectively. We show that for sparse graphs, constant-sized advice is sufficient to obtain a constant competitive ratio, whereas for bipartite graphs, only competitive ratio Ω(log(n/a)/loglog(n/a)) can be obtained with an advice of size a > loglogn. However, competitive ratio O(logn) can be achieved with advice O(loglogn).


Online algorithms Advice complexity Maximum independent set 


  1. 1.
    Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with application to on-line circuit and optical routing. In: Stoc 1996, pp 531–540. ACM (1996)Google Scholar
  2. 2.
    Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with application to on-line circuit and optical routing. SIAM J. Comput. 36(2), 354–393 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bianchi, M., Böckenhauer, H.-J., Hromkovic, J., Keller, L.: Online coloring of bipartite graphs with and without advice. Algorithmica 70(1), 92–111 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Böckenhauer, H.-J., Komm, D., Královic̆, R., Královic̆, R.: On the advice complexity of the k-server problem. In: ICALP 2011, LNCS, Vol. 6755, pp 207–218. Springer (2011)Google Scholar
  5. 5.
    Boöckenhauer, H.-J., Komm, D., Královic̆, R., Královic̆, R., Mömke, T.: On the advice complexity of online problems. In: ISAAC 2009 LNCS, Vol. 5878, pp 331–340. Springer (2009)Google Scholar
  6. 6.
    Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univ. Press (1998)Google Scholar
  7. 7.
    Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: Randomized on-line algorithms and lower bounds for computing large independent sets in disk graphs. Discret. Appl. Math. 155(2), 119–136 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Christodoulou, G., Zissimopoulos, V.: On-line maximum independent set in chordal graphs. J. Found. Comput. Decis. Sci. 30(4), 283–296 (2005)MATHMathSciNetGoogle Scholar
  9. 9.
    Cieślik, I.: On-line graph coloring. Ph.D. Thesis, Jagiellonian University, Krakow, Poland (2004)Google Scholar
  10. 10.
    Demange, M., Paradon, X., Paschos, V.T.: On-line maximum-order induces hereditary subgraph problems. In: SOFSEM 2008 LNCS, Vol. 1963, pp 327–335. Springer (2000)Google Scholar
  11. 11.
    Dereniowski, D., Pelc, A.: Drawing maps with advice. J. Par. Distrib. Comput. 72(2), 132–143 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Dobrev, S., Královic̆, R., Pardubská, D.: Measuring the problem-relevant information in input. ITA 43(3), 585–613 (2009)MATHGoogle Scholar
  13. 13.
    Ebenlendr, T., Sgall, J.: Semi-online preemptive scheduling: One algorithm for all variants. Theory Comput. Syst. 48(3), 577–613 (2011)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)CrossRefMATHGoogle Scholar
  15. 15.
    Escoffier, B., Paschos, V.T.: On-line models and algorithms for max independent set. RAIRO - Oper. Res. 40(02), 129–142 (2006). doi:10.1051/ro:2006014 CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: information sensitivity of graph coloring. Distrib. Comput. 21(6), 395–403 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput. 206(11), 1276–1287 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J. Comput. Syst. Sci. 76(3-4), 222–232 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Fraigniaud, P., Korman, A., Lebhar, E.: Local mst computation with short advice. Theory Comput. Syst. 47(4), 920–933 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fusco, E.G., Pelc, A.: Trade-offs between the size of advice and broadcasting time in trees. Algorithmica 60(4), 719–734 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. Journal of Graph Theory 12(2), 217–227 (1988). doi:10.1002/jgt.3190120212 CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Halldórsson, M.M.: Online coloring known graphs. In: SODA 1999, pp 917–918. ACM/SIAMGoogle Scholar
  23. 23.
    Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289(2), 953–962 (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Håstad, J.: Clique is hard to approximate within n 1−ε. Acta Mathematica 182, 105–142 (1999) [ 10.1007/BF02392825]CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hromkovic̆, J., Královic̆, R., Královic̆, R.: Information complexity of online problems. In: Mfcs 2010 LNCS, Vol. 6281, pp 24–36. Springer (2010)Google Scholar
  26. 26.
    Ilcinkas, D., Kowalski, D.R., Pelc, A.: Fast radio broadcasting with advice. Theor. Comput. Sci. 411(14-15), 1544–1557 (2010)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kubale, M.: Graph colorings. In: Contemporary Mathematics, Vol. 352. AMS (2004)Google Scholar
  28. 28.
    Lipton, R.J., Tomkins, A.: Online interval scheduling (1994) [http: //]
  29. 29.
    Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs and Combinatorics 20(1), 1–40 (2004)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Dobrev
    • 1
  • Rastislav Královič
    • 2
  • Richard Královič
    • 3
    • 4
  1. 1.Institute of MathematicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Computer ScienceComenius UniversityBratislavaSlovakia
  3. 3.Department of Computer ScienceETH ZurichZurichSwitzerland
  4. 4.Google Inc.ZurichSwitzerland

Personalised recommendations