Theory of Computing Systems

, Volume 57, Issue 2, pp 287–318 | Cite as

Synchronizing Relations on Words

Article
  • 142 Downloads

Abstract

While the theory of languages of words is very mature, our understanding of relations on words is still lagging behind. And yet such relations appear in many new applications such as verification of parameterized systems, querying graph-structured data, and information extraction, for instance. Classes of well-behaved relations typically used in such applications are obtained by adapting some of the equivalent definitions of regularity of words for relations, leading to non-equivalent notions of recognizable, regular, and rational relations. The goal of this paper is to propose a systematic way of defining classes of relations on words, of which these three classes are just natural examples, and to demonstrate its advantages compared to some of the standard techniques for studying word relations. The key idea is that of a synchronization of a pair of words, which is a word over an extended alphabet. Using it, we define classes of relations via classes of regular languages over a fixed alphabet, just {1,2} for binary relations. We characterize some of the standard classes of relations on words via finiteness of parameters of synchronization languages, called shift, lag, and shiftlag. We describe these conditions in terms of the structure of cycles of graphs underlying automata, thereby showing their decidability. We show that for these classes there exist canonical synchronization languages, and every class of relations can be effectively re-synchronized using those canonical representatives. We also give sufficient conditions on synchronization languages, defined in terms of injectivity and surjectivity of their Parikh images, that guarantee closure under intersection and complement of the classes of relations they define.

Keywords

Word relations Regular Rational Recognizable 

References

  1. 1.
    Abdulla, J., Jonnson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: (CONCUR’03), pp 35–48 (2003)Google Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: (STOC’04), pp 202–211 (2004)Google Scholar
  3. 3.
    Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008)Google Scholar
  4. 4.
    Anyanwu, K., Sheth, A.: ρ-queries: enabling querying for semantic associations on the semantic web. In: 12th International World Wide Web Conference (WWW’03), pp 690–699 (2003)Google Scholar
  5. 5.
    Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the generalized intersection problem. In: (LICS’12), pp 115–124 (2012), doi:10.1109/LICS.2012.23
  6. 6.
    Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-structured data. ACM Trans. Database Syst. 37(4), 31 (2012)CrossRefGoogle Scholar
  7. 7.
    Ben-Ari, M.: Principles of the Spin model checker. Springer (2008)Google Scholar
  8. 8.
    Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order query languages over strings. J. ACM 50(5), 694–751 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner (1979)Google Scholar
  10. 10.
    Blumensath, A., Grädel, E.: Automatic structures. In: LICS, pp 51–62 (2000)Google Scholar
  11. 11.
    Bojańczyk, M.: Automata for data words and data trees. In: 21st International Conference on Rewriting Techniques and Applications (RTA), Vol. 6, pp 1–4 (2010)Google Scholar
  12. 12.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: (CAV’00), pp 403–418. Springer-Verlag, London (2000)Google Scholar
  13. 13.
    Carton, O.: The growth ratio of synchronous rational relations is unique. Theor. Comput. Sci. 376(1–2), 52–59 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Carton, O., Choffrut, C., Grigorieff, S.: Decision problems among the main subfamilies of rational relations 40(2), 255–275 (2006)Google Scholar
  15. 15.
    Choffrut, C.: Relations over words and logic: A chronology. Bull EATCS 89, 159–163 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Choffrut, C., Culik II, K.: Properties of finite and pushdown transducers. SIAM J. Comput. 12(2), 300–315 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9(1), 47–68 (1965). doi:10.1147/rd.91.0047 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: A formal framework for information extraction. In: (PODS’13) (2013). to appearGoogle Scholar
  19. 19.
    Figueira, D., Libkin, L.: Synchronizing relations on words. In: (STACS’14), Vol. 25, pp 93–104. Leibniz-Zentrum für Informatik, Lyon (2014), doi:10.4230/LIPIcs.STACS.2014.518
  20. 20.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108(1), 45–82 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Harju, T., Mateescu, A., Salomaa, A.: Shuffle on trajectories: The schützenberger product and related operations. In: MFCS, pp 503–511 (1998)Google Scholar
  22. 22.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)Google Scholar
  23. 23.
    Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems. In: (TACAS’00), pp 220–234. Springer-Verlag (2000)Google Scholar
  24. 24.
    Leguy, J.: Transductions rationnelles décroissantes. ITA 15(2), 141–148 (1981)MathSciNetMATHGoogle Scholar
  25. 25.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)Google Scholar
  26. 26.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  27. 27.
    Neven, F.: Automata, Logic, and XML. In: (CSL’02), pp 2–26 (2002)Google Scholar
  28. 28.
    Nivat, M.: Transduction des langages de Chomsky. Ann. Inst. Fourier 18, 339–455 (1968)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  31. 31.
    Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking over infinite systems. In: (FOSSACS’10), pp 221–236 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK

Personalised recommendations