Advertisement

Theory of Computing Systems

, Volume 56, Issue 4, pp 593–611 | Cite as

Towards Optimal Degree Distributions for Left-Perfect Matchings in Random Bipartite Graphs

  • Martin Dietzfelbinger
  • Michael Rink
Article

Abstract

Consider a random bipartite multigraph G with n left nodes and mn≥2 right nodes. Each left node x has d x ≥1 random right neighbors. The average left degree Δ is fixed, Δ≥2. We ask whether for the probability that G has a left-perfect matching it is advantageous not to fix d x for each left node x but rather choose it at random according to some (cleverly chosen) distribution. We show the following, provided that the degrees of the left nodes are independent: If Δ is an integer, then it is optimal to use a fixed degree of Δ for all left nodes. If Δ is non-integral, then an optimal degree-distribution has the property that each left node x has two possible degrees, ⌊Δ⌋ and ⌈Δ⌉, with probability p x and 1−p x , respectively, where p x is from the closed interval [0,1] and the average over all p x equals ⌈Δ⌉−Δ. Furthermore, if c=n/m and Δ>2 are constant, then each distribution of the left degrees that meets the conditions above determines the same threshold c (Δ) that has the following property as n goes to infinity: If c < c (Δ) then asymptotically almost surely there exists a left-perfect matching. If c>c (Δ) then asymptotically almost surely there exists no left-perfect matching. The threshold c (Δ) is the same as the known threshold for offline k-ary cuckoo hashing for integral or non-integral k=Δ.

Keywords

Bipartite graph Matching Random graph Degree distribution Optimization Cuckoo hashing 

Mathematics Subject Classification2010

05C70 05C80 60B20 G.2.2 F.2.2 

Notes

Acknowledgements

The authors would like to thank a reviewer of the conference version of this article for pointing out a gap in an earlier version of the proof of Lemma 3. We are also grateful to the reviewers of the present article for helpful remarks.

References

  1. 1.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT (2009). arXiv:CoRRabs/0912.0287
  2. 2.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT. In: Proceedings 37th ICALP (1), LNCS, vol. 6198, pp 213–225. Springer (2010)Google Scholar
  3. 3.
    Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms, 1st edn. Cambridge University Press, New York. NY, USA (2009)CrossRefGoogle Scholar
  4. 4.
    Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space Efficient Hash Tables with Worst Case Constant Access Time. Theory. Comput. Syst. 38(2), 229–248 (2005)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Fountoulakis, N., Panagiotou, K.: Sharp Load Thresholds for Cuckoo Hashing. Random. Struct. Algorithms 41(3), 306–333 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Frieze, A.M., Melsted, P.: Maximum Matchings in Random Bipartite Graphs and the Space Utilization of Cuckoo Hash Tables. Random. Struct. Algorithms 41(3), 334–364 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Luby, M., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure correcting codes. IEEE Trans. Info. Theory 47(2), 569–584 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Rink, M.: Mixed Hypergraphs for Linear-Time Construction of Denser Hashing-Based Data Structures. In: Proceedings 39th SOFSEM, LNCS, vol. 7741, pp 356–368. Springer (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Fakultät für Informatik und AutomatisierungTechnische Universität IlmenauIlmenauGermany

Personalised recommendations